Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microstructure-induced biomechanical responses of dragonfly wing veins

03.06.2011
Wang's research team discovered the sandwich microstructure of dragonfly wing veins [Wang et al. Compos Sci & Technol, 2008; 68: 186-192] and recently revealed the organic junction between these longitudinal veins and membranes of the dragonfly wing [Chen and Wang et al. Chinese Sci Bull, 2011; 56: 1658-1660].

Based on observed microstructural model and previously reported model about the main longitudinal veins and membrane, in which the former is based on the tubular model with sandwich structure in thickness of tubular, and the latter is based on the sample tubular model with the same material in thickness of tubular, they were used to simulate and characterize the biomechanical responses of dragonfly wings under symmetrical loading.

The results indicated that the effect of different microstructural models on the flapping frequency, trajectories, and corrugated and torsional behaviors of the wing cannot be ignored. This is because the sandwich microstructure, consisting of soft matter with fibers in the protein layer and hierarchical structure in the chitin layer, of the longitudinal vein plays an important role in improving aerodynamic efficiency by creating self-adaptability in the flapping, torsion and camber variations of the wing as it twists. Understanding the complete structure of the wing, including the microstructural features and the organic junction between veins and membranes, provides new insight into the flight mechanism of the dragonfly and the wing's biomechanical responses, as shown by the study reported in issue 56 of the Chinese Science Bulletin and to be reported in the future.

The organic junction with the hierarchical microstructure optimizes the dragonfly wing's biomechanics including to the strength, stiffness and toughness (see Figure 1). The organic junctions enable the corrugation of the total wing along the chord direction, which improves the warping rigidity, while the hierarchical microstructure at the nano scale in the thickness of chitin layer increases the flapping strength of the wing and lift coefficients, but not the torsional rigidity of wing. As the dragonfly wings twist during flapping process, the soft matter with fibers in the protein layer at the micro scale assists the turning performance and allows structural responses between the longitudinal veins and membranes that form the camber of the wing during the three dimensional changes. The camber and zigzag cross-section along the chord direction could enhance the aerodynamic efficiency of the wing [Ennos AR. J Exp Bio, 1988, 140: 137-160; Sane SP. J Exp Bio, 2003; 206: 4191-4208] by creating more vortices under upstrokes and downstrokes, as shown in Figure 2. Moreover, the corrugated wing has an important effect on torsion deformation under sample aerodynamic loading, and it is more flexible than a wing without sandwich longitudinal veins. Thus, the organic junction between the vein and membrane contributes to the dragonfly wing's remarkable biomechanical behavior. In addition, with the help of these two salient features, the wing can easily adjust the its chordwise length by changing the corrugated angle and allowing response to different flight environments. Although it is highly speculative, we believe that the wing possesses some self-adaptabilities to cope with the challenges of flight. From the view of energy, the authors suggest that this kind of self-adaptability helps the dragonfly reduce the amount of energy consumed during flight. Potentially, this research could inspire engineers to design self-adaptable and energy-saving flexible wings for micro aerial vehicles.

The authors are affiliated to the Department of Engineering Mechanics, School of Aerospace, Tsinghua University. This laboratory is conducting research mainly in biomechanics, fatigue damage and fracture mechanics of advanced materials.

Xi Shu Wang | EurekAlert!
Further information:
http://www.tsinghua.edu.cn

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>