Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microstructure-induced biomechanical responses of dragonfly wing veins

Wang's research team discovered the sandwich microstructure of dragonfly wing veins [Wang et al. Compos Sci & Technol, 2008; 68: 186-192] and recently revealed the organic junction between these longitudinal veins and membranes of the dragonfly wing [Chen and Wang et al. Chinese Sci Bull, 2011; 56: 1658-1660].

Based on observed microstructural model and previously reported model about the main longitudinal veins and membrane, in which the former is based on the tubular model with sandwich structure in thickness of tubular, and the latter is based on the sample tubular model with the same material in thickness of tubular, they were used to simulate and characterize the biomechanical responses of dragonfly wings under symmetrical loading.

The results indicated that the effect of different microstructural models on the flapping frequency, trajectories, and corrugated and torsional behaviors of the wing cannot be ignored. This is because the sandwich microstructure, consisting of soft matter with fibers in the protein layer and hierarchical structure in the chitin layer, of the longitudinal vein plays an important role in improving aerodynamic efficiency by creating self-adaptability in the flapping, torsion and camber variations of the wing as it twists. Understanding the complete structure of the wing, including the microstructural features and the organic junction between veins and membranes, provides new insight into the flight mechanism of the dragonfly and the wing's biomechanical responses, as shown by the study reported in issue 56 of the Chinese Science Bulletin and to be reported in the future.

The organic junction with the hierarchical microstructure optimizes the dragonfly wing's biomechanics including to the strength, stiffness and toughness (see Figure 1). The organic junctions enable the corrugation of the total wing along the chord direction, which improves the warping rigidity, while the hierarchical microstructure at the nano scale in the thickness of chitin layer increases the flapping strength of the wing and lift coefficients, but not the torsional rigidity of wing. As the dragonfly wings twist during flapping process, the soft matter with fibers in the protein layer at the micro scale assists the turning performance and allows structural responses between the longitudinal veins and membranes that form the camber of the wing during the three dimensional changes. The camber and zigzag cross-section along the chord direction could enhance the aerodynamic efficiency of the wing [Ennos AR. J Exp Bio, 1988, 140: 137-160; Sane SP. J Exp Bio, 2003; 206: 4191-4208] by creating more vortices under upstrokes and downstrokes, as shown in Figure 2. Moreover, the corrugated wing has an important effect on torsion deformation under sample aerodynamic loading, and it is more flexible than a wing without sandwich longitudinal veins. Thus, the organic junction between the vein and membrane contributes to the dragonfly wing's remarkable biomechanical behavior. In addition, with the help of these two salient features, the wing can easily adjust the its chordwise length by changing the corrugated angle and allowing response to different flight environments. Although it is highly speculative, we believe that the wing possesses some self-adaptabilities to cope with the challenges of flight. From the view of energy, the authors suggest that this kind of self-adaptability helps the dragonfly reduce the amount of energy consumed during flight. Potentially, this research could inspire engineers to design self-adaptable and energy-saving flexible wings for micro aerial vehicles.

The authors are affiliated to the Department of Engineering Mechanics, School of Aerospace, Tsinghua University. This laboratory is conducting research mainly in biomechanics, fatigue damage and fracture mechanics of advanced materials.

Xi Shu Wang | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>