Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Microscopy Technique Reveals Mechanics of Red Blood Cells

Thanks to an interdisciplinary team of researchers, scientists now have a more complete understanding of one of the human body’s most vital structures: the red blood cell.

Led by University of Illinois electrical and computer engineering professor Gabriel Popescu, the team developed a model that could lead to breakthroughs in screening and treatment of blood-cell-morphology diseases, such as malaria and sickle-cell disease. The group published its findings in the Proceedings of the National Academy of Sciences.

Red blood cells (RBCs) are unique in structure – a doughnut-shaped disc full of the oxygen-carrying molecule hemoglobin but none of the intracellular structures of other cells, not even DNA. In circulation, RBCs must contort to squeeze through capillaries half their diameter. Their flexibility and resilience come from their membrane structure, which couples a typical lipid bilayer with an underlying matrix of protein. However, knowledge of the membrane’s mechanics is very limited.

“The deformability of red blood cells is their most important property,” said Popescu, also affiliated with the Beckman Institute for Advanced Science and Technology at U. of I. “What we wanted to find is, how does deformability relate to morphology?”

The research team used a novel measurement technique called diffraction phase microscopy, which uses two beams of light while other microscopes only use one.

"One beam goes through the specimen and one beam is used as a reference,” Popescu said. “It is very, very sensitive to minute displacements in the membrane, down to the nanoscale.”

RBC membrane movement can be observed through typical light microscopes, a phenomenon known as “flickering,” but Popescu’s team was able not only to see nanoscale membrane fluctuations in live cells, but also to measure them quantitatively – a first.

In addition to normal cells, the team also measured two other morphologies: bumpy RBCs called echinocytes and round ones called spherocytes. They discovered that these deformed cells display less flexibility in their membranes, a finding that could provide insight into mechanics and treatment of diseases that affect RBC shape, such as malaria, sickle-cell disease and spherocytosis.

With collaborators from UCLA, the group used its data to construct a new model of the RBC membrane that accounts for fluctuations and curvature, a more complete and accurate rendering than previous models that treated the membrane as a flat sheet.

“Our measurements showed that a flat model could not explain the data. With this curvature model, we understand much better what is happening in the RBC,” said Popescu, adding, “It’s really a combination of a new optical method and new theoretical model, and that is what allowed us to find some new results where the shape and deformability are coupled.”

The team’s technique eventually could be used to screen for blood diseases such as malaria or to screen banked blood for membrane flexibility before transfusion, since stored blood often undergoes cellular shape changes.

In addition, this novel microscopy technique has important implications for researchers interested in membrane biology and dynamics, according to Catherine Best, co-author of the paper and instructor in the U. of I. College of Medicine. “An advantage to studying red blood cells in this way is that we can now look at the effects of chemical agents on membranes, specifically. It is very exciting. For instance, we can look at the membrane effects of alcohol, and we may learn something about tolerance to alcohol,” Best said.

Because diffraction phase microscopy measures live cells without physically manipulating or damaging them, it also could be used to evaluate medications being developed to treat blood cell morphology diseases, according to Popescu. “We can study the mechanics of a single cell under different pharmacological conditions, and I think that would be ideal for testing drugs,” he said.

The National Institutes of Health and the National Science Foundation funded this research, which included collaborators from MIT, Harvard Medical School, the University of Colorado, Harvard University and UCLA.

Liz Ahlberg | University of Illinois
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>