Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNAs in the Songbird Brain Respond to New Songs

01.07.2011
Whenever it hears an unfamiliar song from a male of the same species, the zebra finch stops chirping, hopping and grooming. It listens attentively for minutes at a time, occasionally cocking its head but otherwise immobile. Once it becomes familiar with the song, it goes back to its busy routine.

In a new study, researchers discovered that levels of microRNAs – short lengths of ribonucleic acid that appear to regulate protein production – go up or down in the songbird brain after it hears a new song. These microRNAs likely represent a new class of regulatory agents that fine-tune the brain’s response to social information, said University of Illinois cell and developmental biology professor David Clayton, who led the study.

MicroRNAs are part of a new frontier in genomic biology: the 90 percent of human DNA that doesn’t code for proteins. This “dark matter of the genome” includes genes that are transcribed into many different types of RNA molecules. Scientists are still working to decipher their various structures and functions.

Previous studies found that brain microRNAs “undergo dramatic changes in expression during development and aging and have been functionally implicated in neurological disease,” the authors wrote in their paper in BMC Genomics. MicroRNAs appear to regulate the expression of protein-coding genes by binding to messenger RNA (mRNA) transcripts, the blueprints for proteins, before they can be translated into proteins.

Clayton and other researchers have documented changes in the expression of many mRNAs in the songbird brain after it hears an unfamiliar song. But no studies have, until now, found evidence that microRNAs also contribute to the process by which the brain responds to its environment.

“The question that we started with was, are there microRNAs that are showing a response to song in the brain?” Clayton said. “And the answer is clearly yes, there are. The bigger question that we don’t have an answer to yet is what are they doing?”

The study team, which included researchers from the Baylor College of Medicine and the University of Houston, also identified a microRNA that went up in males and down in females after the birds heard a new song. The gene for this microRNA is on the Z chromosome, the zebra finch’s sex chromosome. Male zebra finches have two copies of the gene and females have only one, suggesting that even baseline levels of this microRNA differ between the sexes.

“To my knowledge, this is the first example of a gene response that’s different in male and female songbirds,” said Clayton, who is an affiliate the U. of I. Institute of Genomic Biology.

Since microRNAs can interfere with the translation of mRNAs into protein, Clayton hypothesizes that mRNAs play a part in fine-tuning the brain’s response to important signals.

“We do see a sudden disappearance of some types of messenger RNA shortly after a bird hears a song,” he said. “We don’t yet know the mechanism of that, but that’s something a microRNA could be doing.”
Editor’s notes: To reach David Clayton, call 217-244-3668; email dclayton@illinois.edu.

The paper, “Song Exposure Regulates Known and Novel MicroRNAs in the Zebra Finch Auditory Forebrain,” is available online.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: Brain MicroRNAs RNA RNA molecule Songbird bird songs genomic messenger RNA respond zebra finch

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>