Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNAs in the Songbird Brain Respond to New Songs

01.07.2011
Whenever it hears an unfamiliar song from a male of the same species, the zebra finch stops chirping, hopping and grooming. It listens attentively for minutes at a time, occasionally cocking its head but otherwise immobile. Once it becomes familiar with the song, it goes back to its busy routine.

In a new study, researchers discovered that levels of microRNAs – short lengths of ribonucleic acid that appear to regulate protein production – go up or down in the songbird brain after it hears a new song. These microRNAs likely represent a new class of regulatory agents that fine-tune the brain’s response to social information, said University of Illinois cell and developmental biology professor David Clayton, who led the study.

MicroRNAs are part of a new frontier in genomic biology: the 90 percent of human DNA that doesn’t code for proteins. This “dark matter of the genome” includes genes that are transcribed into many different types of RNA molecules. Scientists are still working to decipher their various structures and functions.

Previous studies found that brain microRNAs “undergo dramatic changes in expression during development and aging and have been functionally implicated in neurological disease,” the authors wrote in their paper in BMC Genomics. MicroRNAs appear to regulate the expression of protein-coding genes by binding to messenger RNA (mRNA) transcripts, the blueprints for proteins, before they can be translated into proteins.

Clayton and other researchers have documented changes in the expression of many mRNAs in the songbird brain after it hears an unfamiliar song. But no studies have, until now, found evidence that microRNAs also contribute to the process by which the brain responds to its environment.

“The question that we started with was, are there microRNAs that are showing a response to song in the brain?” Clayton said. “And the answer is clearly yes, there are. The bigger question that we don’t have an answer to yet is what are they doing?”

The study team, which included researchers from the Baylor College of Medicine and the University of Houston, also identified a microRNA that went up in males and down in females after the birds heard a new song. The gene for this microRNA is on the Z chromosome, the zebra finch’s sex chromosome. Male zebra finches have two copies of the gene and females have only one, suggesting that even baseline levels of this microRNA differ between the sexes.

“To my knowledge, this is the first example of a gene response that’s different in male and female songbirds,” said Clayton, who is an affiliate the U. of I. Institute of Genomic Biology.

Since microRNAs can interfere with the translation of mRNAs into protein, Clayton hypothesizes that mRNAs play a part in fine-tuning the brain’s response to important signals.

“We do see a sudden disappearance of some types of messenger RNA shortly after a bird hears a song,” he said. “We don’t yet know the mechanism of that, but that’s something a microRNA could be doing.”
Editor’s notes: To reach David Clayton, call 217-244-3668; email dclayton@illinois.edu.

The paper, “Song Exposure Regulates Known and Novel MicroRNAs in the Zebra Finch Auditory Forebrain,” is available online.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: Brain MicroRNAs RNA RNA molecule Songbird bird songs genomic messenger RNA respond zebra finch

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>