Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNAs in the Songbird Brain Respond to New Songs

01.07.2011
Whenever it hears an unfamiliar song from a male of the same species, the zebra finch stops chirping, hopping and grooming. It listens attentively for minutes at a time, occasionally cocking its head but otherwise immobile. Once it becomes familiar with the song, it goes back to its busy routine.

In a new study, researchers discovered that levels of microRNAs – short lengths of ribonucleic acid that appear to regulate protein production – go up or down in the songbird brain after it hears a new song. These microRNAs likely represent a new class of regulatory agents that fine-tune the brain’s response to social information, said University of Illinois cell and developmental biology professor David Clayton, who led the study.

MicroRNAs are part of a new frontier in genomic biology: the 90 percent of human DNA that doesn’t code for proteins. This “dark matter of the genome” includes genes that are transcribed into many different types of RNA molecules. Scientists are still working to decipher their various structures and functions.

Previous studies found that brain microRNAs “undergo dramatic changes in expression during development and aging and have been functionally implicated in neurological disease,” the authors wrote in their paper in BMC Genomics. MicroRNAs appear to regulate the expression of protein-coding genes by binding to messenger RNA (mRNA) transcripts, the blueprints for proteins, before they can be translated into proteins.

Clayton and other researchers have documented changes in the expression of many mRNAs in the songbird brain after it hears an unfamiliar song. But no studies have, until now, found evidence that microRNAs also contribute to the process by which the brain responds to its environment.

“The question that we started with was, are there microRNAs that are showing a response to song in the brain?” Clayton said. “And the answer is clearly yes, there are. The bigger question that we don’t have an answer to yet is what are they doing?”

The study team, which included researchers from the Baylor College of Medicine and the University of Houston, also identified a microRNA that went up in males and down in females after the birds heard a new song. The gene for this microRNA is on the Z chromosome, the zebra finch’s sex chromosome. Male zebra finches have two copies of the gene and females have only one, suggesting that even baseline levels of this microRNA differ between the sexes.

“To my knowledge, this is the first example of a gene response that’s different in male and female songbirds,” said Clayton, who is an affiliate the U. of I. Institute of Genomic Biology.

Since microRNAs can interfere with the translation of mRNAs into protein, Clayton hypothesizes that mRNAs play a part in fine-tuning the brain’s response to important signals.

“We do see a sudden disappearance of some types of messenger RNA shortly after a bird hears a song,” he said. “We don’t yet know the mechanism of that, but that’s something a microRNA could be doing.”
Editor’s notes: To reach David Clayton, call 217-244-3668; email dclayton@illinois.edu.

The paper, “Song Exposure Regulates Known and Novel MicroRNAs in the Zebra Finch Auditory Forebrain,” is available online.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: Brain MicroRNAs RNA RNA molecule Songbird bird songs genomic messenger RNA respond zebra finch

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>