Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNAs in plants: Regulation of the regulator

09.11.2012
A phosphate switch to fine-tune the protein production in the cells

MicroRNAs are essential regulators of the genetic program in multicellular organisms. Because of their potent effects, the production of these small regulators has itself to be tightly controlled.

That is the key finding of a new study performed by Tübingen scientists at the Max Planck Institute for Developmental Biology. They identified a new component that modulates the production of micro RNAs in thale cress, Arabidopsis thaliana, by the removal of phosphate residues from a micro RNA-biogenesis enzyme. This can be as quick as the turn of a switch, allowing the plant to adapt to changing conditions. In this study, the scientists combined advanced imaging for facile detection of plants with defective microRNA activity with whole genome sequencing for rapid identification of new mutations.

The cell seems to thwart itself: Reading the DNA, a mobile messenger RNA is produced in the cell nucleus, exported to the cytoplasm where it serves as a blueprint for the production of proteins. At the same time, the cell is able to produce micro RNAs that, by binding to specific messenger RNAs, can block protein production or even initiate its destruction. But why does the cell start a costly process and immediately stops it? "Well, the answer lies on the fine balance the cell has to achieve between producing a protein and avoid having an excess of it. Reaching the right level of a protein and its adequate temporal and spatial distribution requires, sometimes, opposed forces," says Pablo Manavella, first author of the study and postdoc in the department of Detlef Weigel at the Max Planck Institute for Developmental Biology. "Once the transcript of the messenger RNA is activated it is quite stable. If you need a quick stop, regulatory mechanisms, such as the micro RNAs, will be able to hold up the process," he explains. The study was carried out in collaboration with scientists from the Center for Plant Molecular Biology (ZMBP) and the Proteome Center of the University of Tübingen.

The production of micro RNAs from its precursors has already been extensively studied, especially in animal cells. "Micro RNAs in plants have evolved in parallel and independently. We had to assume that they could be processed in a different way," Pablo Manavella explains.

The scientists used a methodical trick to study the activity of micro RNAs in cells of thale cress plants. First, they developed a reporter system based on the bioluminescent protein luciferase from firefly; its DNA was integrated in the plant cells. Secondly, the scientists inserted in the plant genome a fragment of DNA containing a precursor of an artificial micro RNA that specifically inhibits luciferase. These plants thus initially showed no light emission despite containing the genes encoding luciferase. In a mass experiment, the scientists then triggered unspecific mutations in thousands of plants. With the aid of a special hypersensitive camera the few shining plants were sorted out. "In all these individuals some part of the micro RNA pathway must have been damaged so that luciferase was no longer silenced by the artificial micro RNA," says Pablo Manavella.

To identify the genes responsible for the failure in silencing luciferase, the scientists made use of a new technology developed at the Max Planck Institute, which enables the rapid detection of causal mutations by whole-genome sequence analysis. "Just a few years ago, this project would have been difficult to complete within two years. Nowadays, whole genome sequencing is a rapid and affordable method. By combining the screening test on luciferase activity with whole genome sequencing we could reduce the study period from years to several months," Pablo Manavella explains. Among the obtained mutants the scientists identified the phosphatase CPL1 as a key component of the microRNA biogenesis pathway. This protein modulates the production of these molecules by removing phosphate residues from HYL1, one of the main co-factors in the pathway, impairing the production of micro RNAs. Once produced these micro RNAs will bind to the corresponding messenger RNAs stopping the production of the protein.

"We have identified one factor able to regulate the activity of the regulators," Pablo Manavella summarizes their results. Micro RNAs represent only one of the of genetic regulation mechanisms among many others; however, in the manner of a switch they provide quick and efficient answers to changing requirements, for example in many developmental processes. In general, micro RNAs in plants are much more specific than in animals, the scientists say. "Plants cannot run away when facing a stressful condition. Therefore they need quick ways to regulate its genes in order to adapt to such situations."
Contact
Dr. Pablo Manavella
Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-1405
Email: pablo.manavella@­tuebingen.mpg.de
Prof. Dr. Detlef Weigel
Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-1410
Email: detlef.weigel@­tuebingen.mpg.de
Janna Eberhardt
Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-444
Fax: +49 7071 601-359
Email: presse-eb@­tuebingen.mpg.de
Original publication
Pablo A. Manavella, Jörg Hagmann, Felix Ott, Sascha Laubinger, Mirita Franz, Boris Macek, Detlef Weigel
Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL 1

Cell, Vol. 151, 4

Dr. Pablo Manavella | EurekAlert!
Further information:
http://www.mpg.de/6616426/micro-RNAs-plants

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>