Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MicroRNA suppresses prostate cancer stem cells and metastasis

UT MD Anderson preclinical research boosts case for new drug approach

A small slice of RNA inhibits prostate cancer metastasis by suppressing a surface protein commonly found on prostate cancer stem cells. A research team led by scientists at The University of Texas MD Anderson Cancer Center reported today in an advance online publication at Nature Medicine.

"Our findings are the first to profile a microRNA expression pattern in prostate cancer stem cells and also establish a strong rationale for developing the microRNA miR-34a as a new treatment option for prostate cancer," said senior author Dean Tang, Ph.D., professor in MD Anderson's Department of Molecular Carcinogenesis.

MicroRNAs, or miRNAs, are short, single-stranded bits of RNA that regulate the messenger RNA expressed by genes to create a protein.

Cancer stem cells are capable of self-renewal, have enhanced tumor-initiating ability and are generally more resistant to treatment than other cancer cells. They are associated with tumor recurrence and metastasis, the lethal spreading of cancer to other organs. These capacities are more prevalent in cancer cells that feature a specific cell surface protein called CD44, Tang said.

"CD44 has long been linked to promotion of tumor development and, especially, to cancer metastasis," Tang said. "Many cancer stem cells overexpress this surface adhesion molecule. Another significant finding from our study is identifying CD44 itself as a direct and functional target of miR-34a."

MicroRNA goes up, CD44 and cancer stem cells fall

In a series of lab experiments with cell lines, human xenograft tumors in mice and primary human prostate cancer samples, the researchers demonstrated that miR-34a inhibits prostate cancer stem cells by suppressing CD44.

miR-34a is greatly reduced in prostate cancer cells that express high levels of CD44 on the cell surface. In 18 human prostate tumors, the microRNA was expressed at 25 to 70 percent of the levels found in cells without CD44.

Prostate tumors in mice that also received miR-34a treatment were one third to half the average size of those in control group mice.

In CD44-positive prostate cancer cell lines, treatment with miR-34a resulted in greatly reduced tumor incidence. Most dramatically, in one cell line, tumor regeneration was blocked in all 10 treated animals, while tumors formed in all 10 animals treated with the control miRNAs.

Many characteristics of cancer stem cells – formation of self-renewing cells, clonal growth capacity and formation of spheres – were suppressed when miR-34a was overexpressed in prostate cancer cell lines.

Most significantly, intravenous treatment of tumor-bearing mice with synthetic miR-34a reduced tumor burden by half in one tumor type. It also steeply reduced lung metastases in another tumor type, resulting in increased animal survival.

Interestingly, the researchers observed a consistent, inverse relationship between miR-34a levels and CD44, the surface marker used to enrich prostate cancer stem cells. For example, the CD44 protein and CD44-expressing cancer cells were reduced in tumors treated with the microRNA. Tumors with miR-34a blocked had higher levels of CD44 protein and messenger RNA.

Finally, knocking down CD44 with a short hairpin RNA produced the same results as treating cells with miR-34a did – reduced tumor development, tumor burden and metastases.

"There are many companies developing microRNA-based drugs," Tang said. "Delivery of miRNAs is a challenge, but the field is moving fast through the preclinical stage."

Scientists from Austin-based Mirna Therapeutics collaborated on the study. Mirna has eight microRNAs in preclinical development, including miR-34a.

The project was funded in part by grants from the National Cancer Institute and the National Institute of Environmental Health Science, the U.S. Department of Defense and the Elsa Pardee Foundation.

Co-authors were first author Can Liu, Bigang Liu, M.D., Xin Chen, Tammy Calhoun-Davis, Hangwen Li, Ph.D., Hong Yan, Ph.D., Collene Jeter, Ph.D., and Sofia Honorio, Ph.D., all of MD Anderson's Department of Molecular Carcinogenesis at the Science Park in Smithville, Texas; Can Liu and Xin Chen are also students in The University of Texas Graduate School of Biomedical Sciences at Houston, jointly operated by MD Anderson and The University of Texas Health Science Center at Houston; Lubna Patrawala, Ph.D., Kevin Kelnar, Jason Wiggins, Andreas Bader, Ph.D., and David Brown, Ph.D., all of Mirna Therapeutics, Inc. and Randy Fagin, M.D., of The Hospital at Westlake, Austin, Texas.

About MD Anderson

The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For seven of the past nine years, including 2010, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report. Get MD Anderson News Via RSS Follow MD Anderson News on Twitter

Scott Merville | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>