Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MicroRNA network study implicates rewired interactions in cancer

Genes interact in complex networks that govern cellular processes, much like people connect a social network through relationships. Researchers are now discovering how biological networks change and are rewired in cancer. In a study published today in Genome Research (, scientists have analyzed the genetic networks of microRNAs in tumors, shedding light on how interactions go awry in disease.

MicroRNAs (miRNAs) are short RNA molecules encoded by plant, animal, and viral genomes that have garnered significant interest for their ability to regulate gene expression. Many critical biological processes are regulated by miRNAs, and recent evidence has shown that alterations in miRNA expression is involved in human tumor development and metastasis.

Investigations into the role of miRNAs in cancer up until now have largely focused on the function and expression of individual miRNAs, but miRNA function is more complex and interwoven. "MicroRNAs were always considered as singles, generally unrelated to each other in the miRNA world," said Ohio State University researcher Carlo Croce. "We did not know much about how miRNAs cooperate."

Because a single miRNA is likely to regulate many genes, and each target gene may be regulated by more than one miRNA, Croce and an international team of colleagues suggested that in order to capture the complex patterns of miRNA expression in cancer, the system must be thought of as a "social network" that coordinates the delicate balance of gene regulation.

Croce explained that in healthy tissues, miRNAs are connected in networks and different cell types have different network connections. In cancer, it is likely that normal network interactions have become disrupted or rewired, contributing to disease.

The group analyzed patterns of miRNA expression levels in a large set of normal and cancerous tissue samples, mapping groups of miRNAs exhibiting highly related patterns of expression. Once relationships were recognized, they could then build a genetic network revealing the most highly connected miRNAs, called "hubs."

When comparing the miRNA networks built from normal tissues to the networks built from tumor samples, Croce's team found cases where the miRNA networks have been reprogrammed in cancer. In some cases, they found that the highly connected miRNA hubs changed between cancer and normal tissues.

They also identified even more extreme cases of tumor network changes. "Groups of miRNAs go awry and exit from the 'social network' altogether," Croce said. "In solid cancers there can be a few, or more, groups of such misbehaved miRNAs, while in leukemias we found only one or two." Some of these "unsocial" miRNAs have well-known roles in cancer, but others had not been implicated until now.

This work is particularly significant in that novel cancer genes have been discovered utilizing a strategy based on relationships, rather than up or down regulation of expression. "The miRNAs we discovered can now be used as targets for drug development," Croce added, "or to pinpoint candidate proteins, which, in turn, they regulate."

Scientists from the Ohio State University (Columbus, OH), the University of Ferrara (Ferrara, Italy), The Scripps Research Institute (La Jolla, CA), the University of California, Los Angeles (Los Angeles, CA), Thomas Jefferson University (Philadelphia, PA), the National Institutes of Health (Bethesda, MD), the University of California, San Diego, (La Jolla, CA), the Charité - Universitätsmedizin Berlin (Berlin, Germany), Institut Pasteur (Paris, France), MD Anderson Cancer Center (Houston, TX), and the University of Rome (Rome, Italy) contributed to this study.

This work was primarily funded by grants from the National Cancer Institute, with additional support from the Italian Association for Cancer Research (Associazione Italiana per la Ricerca sul Cancro), the Ministry of Education, University and Research (Italy), and BioPharmaNet.

Media contacts:

Carlo M. Croce, MD is available for more information by contacting Darrell E. Ward, Associate Director of Media Relations at The Ohio State University Medical Center (+1-614-293-3737;

Interested reporters may obtain copies of the manuscript from Peggy Calicchia, Editorial Secretary, Genome Research (; +1-516-422-4012).

About the article:

The manuscript will be published online and in print on May 3, 2010. Its citation is as follows: Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A, Marchesini J, Mascellani N, Sana ME, Abu Jarour R, et al. Reprogramming of miRNA networks in cancer and leukemia. Genome Res doi:10.1101/gr.098046.109.

About Genome Research:

Launched in 1995, Genome Research ( is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.

About Cold Spring Harbor Laboratory Press:

Cold Spring Harbor Laboratory is a private, nonprofit institution in New York that conducts research in cancer and other life sciences and has a variety of educational programs. Its Press, originating in 1933, is the largest of the Laboratory's five education divisions and is a publisher of books, journals, and electronic media for scientists, students, and the general public.

Genome Research issues press releases to highlight significant research studies that are published in the journal.

Peggy Calicchia | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>