Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microreactors: Small scale chemistry could lead to big improvements for biodegradable polymers

Using a small block of aluminum with a tiny groove carved in it, a team of researchers from the National Institute of Standards and Technology (NIST) and the Polytechnic Institute of New York University is developing an improved "green chemistry" method for making biodegradable polymers.

Their recently published work* is a prime example of the value of microfluidics, a technology more commonly associated with inkjet printers and medical diagnostics, to process modeling and development for industrial chemistry.

"We basically developed a microreactor that lets us monitor continuous polymerization using enzymes," explains NIST materials scientist Kathryn Beers. "These enzymes are an alternate green technology for making these types of polymers—we looked at a polyester—but the processes aren't really industrially competitive yet," she says. Data from the microreactor, a sort of zig-zag channel about a millimeter deep crammed with hundreds of tiny beads, shows how the process could be made much more efficient. The team believes it to be the first example of the observation of polymerization with a solid-supported enzyme in a microreactor.

The group studied the synthesis of PCL,** a biodegradable polyester used in applications ranging from medical devices to disposable tableware. PCL, Beers explains, most commonly is synthesized using an organic tin-based catalyst to stitch the base chemical rings together into the long polymer chains. The catalyst is highly toxic, however, and has to be disposed of.

Modern biochemistry has found a more environmentally friendly substitute in an enzyme produced by the yeast strain Candida antartica, Beers says, but standard batch processes—in which the raw material is dumped into a vat, along with tiny beads that carry the enzyme, and stirred—is too inefficient to be commercially competitive. It also has problems with enzyme residue contaminating and degrading the product.

By contrast, Beers explains, the microreactor is a continuous flow process. The feedstock chemical flows through the narrow channel, around the enzyme-coated beads, and, polymerized, out the other end. The arrangement allows precise control of temperature and reaction time, so that detailed data on the chemical kinetics of the process can be recorded to develop an accurate model to scale the process.

"The small-scale flow reactor allows us to monitor polymerization and look at the performance recyclability and recovery of these enzymes," Beers says. "With this process engineering approach, we've shown that continuous flow really benefits these reactors. Not only does it dramatically accelerate the rate of reaction, but it improves your ability to recover the enzyme and reduce contamination of the product." A forthcoming follow-up paper, she says, will present a full kinetic model of the reaction that could serve as the basis for designing an industrial scale process.

While this study focused on a specific type of enzyme-assisted polymer reactions, the authors observe, "it is evident that similar microreactor-based platforms can readily be extended to other systems; for example, high-throughput screening of new enzymes and to processes where continuous flow mode is preferred."

* S. Kundu, A. S. Bhangale, W. E. Wallace, K. M. Flynn, C. M. Guttman, R. A. Gross and K. L. Beers. Continuous flow enzyme-catalyzed polymerization in a microreactor. J. Am. Chem. Soc.

** Polycaprolactone

Michael Baum | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>