Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micropredators dictate occurrence of deadly amphibian disease

20.01.2014
A new study raises hope to successfully fight the chytrid amphibian pathogen

An international team of researchers has made important progress in understanding the distribution of the deadly amphibian chytrid pathogen.


Ibón Acherito in the Spanish Pyrenees. The researchers collected water samples there to better understand the current distribution of the pathogen Bd. The lake is on an altitude of about 1900 m in the Western Pyrenees and contains a large number of different amphibian species.
Photo: Dirk S. Schmeller/UFZ


The midwife toad (Alytes obstetricans) in the Pyrenees. Some populations of this species did resist Bd infection and the pattern of the resistances was a first indication for the researchers that interactions between Bd zoospores and microorganisms are worth investigating more deeply.
Photo: Dirk S. Schmeller/UFZ

In some regions, the deadly impact of the pathogen appears to be hampered by small predators, naturally occurring in freshwater bodies. These micropredators may efficiently reduce the number of free-swimming infectious stages (zoospores) by consuming them. This natural behavior will reduce the infection pressure on potential amphibian hosts and a goes a long way towards explaining the occurrence of chytridiomycosis, at least in temporal climatic regions.

These results were published in the renowned scientific journal Current Biology. The team of researchers state that their results raise the hope of successfully fighting chytridiomycosis, nowadays one of the most deadly wildlife diseases.

The entire class of the amphibians is greatly affected by the current wave of global extinctions. Although anthropogenic habitat alteration and fragmentation are the most important causes of amphibian biodiversity loss, mere conservation of amphibian habitats no longer guarantees amphibian survival. Indeed, the introduction of infectious diseases has been shown to drive amphibians to extinction even in seemingly pristine habitats. "The current amphibian decline is a disaster for ecosystems around the world" says Dr. Dirk S. Schmeller from the Helmholtz-Center for Environmental Research (UFZ) and the CNRS Unit Ecolab, and adds "Amphibians have key roles in freshwater ecosystems, and when they are gone, far going changes are unavoidable".

Chytridiomycosis is a disease which is devastating amphibians around the world. It is caused by the deadly chytrid skin fungus (Batrachochytrium dendrobatidis), or Bd, as scientists call it in short. Bd infects the skin of amphibians, which is an important respiratory organ for them, allowing them to breathe also in the water. "Bd needs to establish in a new environment and has usually a tight time window to infect a suitable host, either an adult amphibian or tadpoles and larvae of this species group", says veterinarian Prof. Dr. Frank Pasmans from the University of Ghent.

If Bd successfully establishes, infections will steadily increase and above a certain threshold, amphibians will start dying. In vulnerable species, local extinction can occur. In this manner many species have been lost, especially in Central America and tropical Australia. However, this worst case scenario did not occur in all populations of the Midwife Toad A. obstetricans in the Pyrenean Mountains, the main study area of the Biodiversa-project RACE, which intrigued scientists. They started a whole range of experiments, which took over three years to complete, to understand, which differences between different ponds and lakes of the Pyrenees could explain such a pattern. "The infected lakes and ponds did not look like the uninfected ones, neither in regard to the vegetation nor in regard to the geological characteristics" says Dirk S. Schmeller.

"When we brought in water from infected and uninfected sites, in some cases with help from donkeys, we saw clear differences in laboratory cultures of the pathogen, as well as in the infection dynamics." *provide a photo of donkeys carrying water* A series of additional experiments than clearly established that some microscopic aquatic predators, such as protozoans and rotifers, are capable of consuming large quantities of the infectious stage of Bd.

"The consumption of zoospores reduces the infection pressure for the whole population by reducing the number of infected tadpoles", says Mark Blooi from the University of Ghent.

Water bodies that do not support a diverse and abundant micropredator community, such as those that suffer from anthropogenic and environmental pressures, could lead to higher infection rates that lead to outbreaks of disease and amphibian population crashes. Dr. Adeline Loyau from the Helmholtz-Center for Environmental Research and the CNRS Unit Ecolab adds: "The big question to rapidly answer is, if by steering micropredator abundance and community composition, can we alleviate the impact of chytridiomycosis in natural amphibian populations? And if so, does this offer a realistic method for preservation of amphibians in Bd infected areas around the world." The work, conducted by an international research team financed by the Biodiversa-Project RACE, raises the hope for an effective biocontrol against the Chytrid fungus, one without the downsides associated with introducing nonnative biocontrol agents, such as the use of antifungal chemicals or release of nonnative skin bacteria into the environment, or the reliance of unpredictable environmental temperature to ‘‘cure'' infections. The study also contributes to a better understanding on how ecosystem health is linked to the establishment of pathogens in new environments, as only in healthy ecosystems the community of microorganisms might be able to consume zoospores effectively.

The results have been published in the January issue of Current Biology.

For photos and links see http://www.ufz.de/index.php?en=32370

Publication:
Dirk S. Schmeller, Mark Blooi, An Martel, Trenton W.J. Garner, Matthew C. Fisher, Frédéric Azemar, Frances C. Clare, Camille Leclerc, Lea Jäger, Michelle Guevara-Nieto, Adeline Loyau, Frank Pasmans: Microscopic Aquatic Predators Strongly Affect Infection Dynamics of a Globally Emerged Pathogen. Current Biology, 2014. http://dx.doi.org/10.1016/j.cub.2013.11.032

The work was conducted in the framework of the Biodiversa Project RACE and additionally financed by the Royal Zoological Society of Antwerp.

Further information:
Dr. Dirk S. Schmeller, Dr. Adeline Loyau
Helmholtz-Zentrum für Umweltforschung (UFZ)
phone: +49-(0)341-235-3282
http://www.ufz.de/index.php?en=12786
Prof. Dr. F. Pasmans/ Dr. Mark Blooi
Ghent University, Belgium
http://www.ugent.be/di/di05/nl/onderzoek/pasmans
Prof. Matthew C. Fisher
Imperial College London, Department of Infectious Disease Epidemiology
http://www1.imperial.ac.uk/medicine/people/matthew.fisher/
Dr. Trenton W. J. Garner
Institute of Zoology, Zoological Society of London
http://www.zsl.org/science/ioz-staff-students/garner,1093,AR.html
or
Tilo Arnhold, Susanne Hufe (UFZ press office)
phone: +49-(0)341-235-1635, -1630
http://www.ufz.de/index.php?en=640
Additional Links
RACE (Risk Assessment of Chytridiomycosis to European Amphibian Biodiversity):
https://www.bd-maps.eu/
https://www.bd-maps.eu/docs/race_factsheet.pdf
Wildlife diseases threaten Europe's biodiversity
RACE wrote a policy brief for IUCN that has now been published on the IUCN website: http://iucn.org/about/union/secretariat/offices/europe/?13819/Wildlife-diseases-threaten-Europes-biodiversity

At the Helmholtz Centre for Environmental Research (UFZ) scientists are interested in the wide-ranging causes and impacts of environmental change. They conduct research on water resources, biodiversity, the impacts of climate change and adaptation strategies, environmental and biotechnologies, bioenergy, the behaviour of chemicals in the environment and their effects on health, modelling and sociological issues. Their guiding motto: our research serves the sustainable use of natural resources and helps towards long-term food and livelihood security in the face of global change. The UFZ has over 1100 employees working in Leipzig, Halle und Magdeburg. It is funded by the federal government, as well as by the State of Saxony and Saxony Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to finding solutions for large and pressing issues in society, science and the economy through excellence in the following six areas of research: energy, earth and the environment, health, key technologies, structure of matter, transport and aerospace. With almost 35,000 employees and coworkers in 18 research centres and an annual budget of approx. 3.8 billion Euros the Helmholtz Association is the largest scientific organization in Germany. Work is conducted in the tradition of the renowned natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/en/

Tilo Arnhold | UFZ News
Further information:
http://www.ufz.de/index.php?en=640
http://www.ufz.de/index.php?en=32370

More articles from Life Sciences:

nachricht Even plants can be stressed
03.09.2015 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht Research team from Münster develops innovative catalytic chemistry process
03.09.2015 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>