Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micropatterned material surface controls cell orientation

15.10.2009
Cells could be orientated in a controlled way on a micro-patterned surface based upon a delicate material technique, and the orientation could be semi-quantitatively described by some statistical parameters, as suggested by the group of DING from Fudan University, Shanghai, CHINA.

The study is reported in Issue 18, Volume 54 (September 2009) of the Chinese Science Bulletin as one of the papers in a special issue about Biomedical Materials in this journal.

Cell-material interaction is a very important fundamental topic in natural science, yet is too complex to be revealed without unique research methods. Micropatterning technique, especially photolithography, a widely used technique in microelectronic industry, has recently been employed by material scientists and biologists to generate a surface with cell-adhesion contrast to control cell localization. The present study confirms that cells could be well orientated along a micropattern with cell-adhesive stripes in an adhesion-resistant background.

"While cell orientation on a micropattern is not the first observation, our work distinguishes itself by employing a PEG hydrogel instead of a PEG self assembly monolayer as background, and thus the cell adhesion contrast would be maintained for a long time, which guarantees more convenient and convincing observations," noted the corresponding author Jian-dong DING, director of the Key Laboratory of Molecular Engineering of Polymers of the Chinese Ministry of Education and professor of the Department of Macromolecular Science, Fudan University. "This paper further put forward five statistical parameters which describe cell orientation from different aspects."

In this paper, the authors prepared, by the photolithographic transfer technique, stable gold (Au) micropatterns on PEG hydrogel surfaces with defined cell-resistant (PEG hydrogel) and cell-adhesive (gold microstripes) properties. 3T3 fibroblasts were cultured on Au-microstripe surfaces to observe cell adhesion and orientation. Five statistical parameters were defined and used to describe cell orientation on micropatterns. With the increase of inter-stripe distance, the orientational order parameter, the ratio of long and short axes of a cell, and the occupation fraction of cells on stripes increased gradually, whereas the spreading area of a single cell decreased. The abrupt changes of these four parameters did not happen at the same inter-distance. The adhesion ratio of a cell on Au stripes over cell spreading area did not change monotonically as a function of inter-stripe distance. The combination of the five statistical parameters represented well the cell orientation behaviors semi-quantitatively.

This work was a 973 project of nanoscience and financially supported by the National Basic Research Program, and Professor Ding is the current leader of the 973 project of biomedical nanomaterials. Some early research was also partially supported by Key Project of the Chinese Ministry of Education, and Science and Technology Developing Foundation of Shanghai. The first and second authors, Jian-guo SUN and Jian TANG among the three authors of this paper are PhD students of Professor DING.

The present work is ready to be extended by developing pertinent micropatterning technique in three dimensions in Material Science, examination of various kinds of cells in Biology, exploring the underling mechanism of signal transduction in Cell Biology and Molecular Biology, application of the research in Regenerative Medicine such as Tissue Engineering which is related to various surgeries.

Reference: Jianguo Sun, Jian Tang, Jiandong Ding*. Cell orientation on a stripe-micropatterned surface. Chn. Sci. Bull. 2009; 54(18): 3154-3159. http://www.wjgnet.com/1007-9327/13/4873.asp

Jiandong DING | EurekAlert!
Further information:
http://www.fudan.edu.cn

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>