Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micropatterned material surface controls cell orientation

15.10.2009
Cells could be orientated in a controlled way on a micro-patterned surface based upon a delicate material technique, and the orientation could be semi-quantitatively described by some statistical parameters, as suggested by the group of DING from Fudan University, Shanghai, CHINA.

The study is reported in Issue 18, Volume 54 (September 2009) of the Chinese Science Bulletin as one of the papers in a special issue about Biomedical Materials in this journal.

Cell-material interaction is a very important fundamental topic in natural science, yet is too complex to be revealed without unique research methods. Micropatterning technique, especially photolithography, a widely used technique in microelectronic industry, has recently been employed by material scientists and biologists to generate a surface with cell-adhesion contrast to control cell localization. The present study confirms that cells could be well orientated along a micropattern with cell-adhesive stripes in an adhesion-resistant background.

"While cell orientation on a micropattern is not the first observation, our work distinguishes itself by employing a PEG hydrogel instead of a PEG self assembly monolayer as background, and thus the cell adhesion contrast would be maintained for a long time, which guarantees more convenient and convincing observations," noted the corresponding author Jian-dong DING, director of the Key Laboratory of Molecular Engineering of Polymers of the Chinese Ministry of Education and professor of the Department of Macromolecular Science, Fudan University. "This paper further put forward five statistical parameters which describe cell orientation from different aspects."

In this paper, the authors prepared, by the photolithographic transfer technique, stable gold (Au) micropatterns on PEG hydrogel surfaces with defined cell-resistant (PEG hydrogel) and cell-adhesive (gold microstripes) properties. 3T3 fibroblasts were cultured on Au-microstripe surfaces to observe cell adhesion and orientation. Five statistical parameters were defined and used to describe cell orientation on micropatterns. With the increase of inter-stripe distance, the orientational order parameter, the ratio of long and short axes of a cell, and the occupation fraction of cells on stripes increased gradually, whereas the spreading area of a single cell decreased. The abrupt changes of these four parameters did not happen at the same inter-distance. The adhesion ratio of a cell on Au stripes over cell spreading area did not change monotonically as a function of inter-stripe distance. The combination of the five statistical parameters represented well the cell orientation behaviors semi-quantitatively.

This work was a 973 project of nanoscience and financially supported by the National Basic Research Program, and Professor Ding is the current leader of the 973 project of biomedical nanomaterials. Some early research was also partially supported by Key Project of the Chinese Ministry of Education, and Science and Technology Developing Foundation of Shanghai. The first and second authors, Jian-guo SUN and Jian TANG among the three authors of this paper are PhD students of Professor DING.

The present work is ready to be extended by developing pertinent micropatterning technique in three dimensions in Material Science, examination of various kinds of cells in Biology, exploring the underling mechanism of signal transduction in Cell Biology and Molecular Biology, application of the research in Regenerative Medicine such as Tissue Engineering which is related to various surgeries.

Reference: Jianguo Sun, Jian Tang, Jiandong Ding*. Cell orientation on a stripe-micropatterned surface. Chn. Sci. Bull. 2009; 54(18): 3154-3159. http://www.wjgnet.com/1007-9327/13/4873.asp

Jiandong DING | EurekAlert!
Further information:
http://www.fudan.edu.cn

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>