Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganisms Getting a Grip — Plasmids Control Marine Biofilm Formation

11.03.2016

Switching between mobile and sessile life styles is typical of many species of the bacteria of the Roseobacter group. Microbiologists at the Leibniz Institute DSMZ have now demonstrated that the genes responsible for this, usually are located outside the bacterial chromosome on a single plasmid. The study show that even characteristics as complex as the ability of biofilm formation can be passed on via horizontal gene transfer. Within the Roseobacter group, this has actually happened multiple times.

Their diverse metabolic characteristics make bacteria of the Roseobacter group some of the most abundant microorganisms in nutrient-rich coastal waters. Roseobacters together with other bacteria form highly complex biofilms that have been dubbed “cities of microbes”.


Phaeobacter inhibens DSM 17395 forming a biofilm

Leibniz Institute DSMZ

However, they can also be found swimming freely in the oceans. Switching between mobile and sessile life styles is typical of many species of these marine bacteria. This flexibility is based on their ability to actively move with the help of flagella, while they are also capable of reversibly attaching to surfaces.

Jörn Petersen, a microbiologist at the Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, in Braunschweig, Germany, and his colleagues have now demonstrated that the genes responsible for biofilm formation usually are located outside the bacterial chromosome on a single plasmid.

They reached this conclusion based on a physiological and genetic study of 33 Roseobacter strains. First, Petersen and colleagues showed that all bacteria that are efficient biofilm formers also are mobile. By removing the plasmids responsible for biofilm formation, they were able to demonstrate that the bacteria not only lost their ability of adhering to surfaces, but also their swimming capability.

“Thus, it is obvious that the responsible genes are located on these extrachromosomal elements,” said Petersen. Genes that are passed on via plasmids are able to cross the species boundary relatively easily. “Our studies show that even characteristics as complex as the ability of biofilm formation can be passed on via horizontal gene transfer,” said Petersen. Within the Roseobacter group, this type of horizontal gene transfer has actually happened multiple times, reflecting the great importance of plasmids for quick adaptation to new ecological niches.

The majority of the 33 Roseobacter strains studied were type strains, i.e., reference strains representative of the world’s bacterial diversity, which are archived in the DSMZ collection. Unlike previous studies, the DSMZ researchers genetically analyzed the group across its full evolutionary range. “Our present studies by far exceed anecdotal findings previously reported for individual model organisms. Moreover, they demonstrate the close link between basic research and collection activities here at DSMZ. As such, they also reflect DSMZ’s importance as one of the world’s leading resource centers for biological materials,” said Petersen.

The studies were supported by the Deutsche Forschungsgemeinschaft (DFG) and are part of the DFG Collaborative Research Center TRR51, “Roseobacter.” Results were recently published in Nature Publishing Group’s distinguished ISME Journal.

Further reading:
Original article:
Michael V, Frank O, Bartling P, Scheuner C, Göker M, Brinkmann H, Petersen J. (2016). Biofilm plasmids with a rhamnose operon are widely distributed determinants of the ʻswim-or-stickʼ lifestyle in roseobacers. ISME J [Epub ahead of print]. http://doi.org/10.1038/ismej.2016.30

Background:
Petersen J, Frank O, Göker M, Pradella S. (2013). Extrachromosomal, extraordinary and essential - the plasmids of the Roseobacter clade. Applied Microbiology and Biotechnology 97: 2805-2815.

Frank O, Michael V, Päuker O, Boedeker C, Jogler C, Rohde M, Petersen J. (2015). Plasmid curing and the loss of grip--the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Systematic and Applied Microbiology 38:120-127.

Scientific contact:
PD Dr. Jörn Petersen
Department Protists and Cyanobacteria (PuC)
Head of Projekt A5 „Plasmide“ Transregio Sonderforschungsbreich (TRR51)
Phone.: 0531 2616-209
Email: joern.petersen@dsmz.de

About Leibniz Institute DSMZ
The Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures GmbH is a Leibniz Association institution. Offering comprehensive scientific services and a wide range of biological materials it has been a partner for research and industry organizations worldwide for decades. DSMZ is one of the largest biological resource centers of its kind to be compliant with the internationally recognized quality norm ISO 9001:2008. As a patent depository, DSMZ currently offers the only option in Germany of accepting biological materials according to the requirements of the Budapest Treaty. The second major function of DSMZ, in addition to its scientific services, is its collection-related research. The Brunswick (Braunschweig), Germany, based collection has existed for 42 years and holds more than 52,000 cultures and biomaterials. DSMZ is the most diverse collection worldwide: In addition to fungi, yeasts, bacteria, and archea, it is home to human and animal cell cultures, plant viruses, and plan cell cultures that are archived and studied there. http://www.dsmz.de

Christian Engel | idw - Informationsdienst Wissenschaft

Further reports about: Biofilm DSMZ Marine biofilm formation biological materials plasmids strains

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>