Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganisms Getting a Grip — Plasmids Control Marine Biofilm Formation

11.03.2016

Switching between mobile and sessile life styles is typical of many species of the bacteria of the Roseobacter group. Microbiologists at the Leibniz Institute DSMZ have now demonstrated that the genes responsible for this, usually are located outside the bacterial chromosome on a single plasmid. The study show that even characteristics as complex as the ability of biofilm formation can be passed on via horizontal gene transfer. Within the Roseobacter group, this has actually happened multiple times.

Their diverse metabolic characteristics make bacteria of the Roseobacter group some of the most abundant microorganisms in nutrient-rich coastal waters. Roseobacters together with other bacteria form highly complex biofilms that have been dubbed “cities of microbes”.


Phaeobacter inhibens DSM 17395 forming a biofilm

Leibniz Institute DSMZ

However, they can also be found swimming freely in the oceans. Switching between mobile and sessile life styles is typical of many species of these marine bacteria. This flexibility is based on their ability to actively move with the help of flagella, while they are also capable of reversibly attaching to surfaces.

Jörn Petersen, a microbiologist at the Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, in Braunschweig, Germany, and his colleagues have now demonstrated that the genes responsible for biofilm formation usually are located outside the bacterial chromosome on a single plasmid.

They reached this conclusion based on a physiological and genetic study of 33 Roseobacter strains. First, Petersen and colleagues showed that all bacteria that are efficient biofilm formers also are mobile. By removing the plasmids responsible for biofilm formation, they were able to demonstrate that the bacteria not only lost their ability of adhering to surfaces, but also their swimming capability.

“Thus, it is obvious that the responsible genes are located on these extrachromosomal elements,” said Petersen. Genes that are passed on via plasmids are able to cross the species boundary relatively easily. “Our studies show that even characteristics as complex as the ability of biofilm formation can be passed on via horizontal gene transfer,” said Petersen. Within the Roseobacter group, this type of horizontal gene transfer has actually happened multiple times, reflecting the great importance of plasmids for quick adaptation to new ecological niches.

The majority of the 33 Roseobacter strains studied were type strains, i.e., reference strains representative of the world’s bacterial diversity, which are archived in the DSMZ collection. Unlike previous studies, the DSMZ researchers genetically analyzed the group across its full evolutionary range. “Our present studies by far exceed anecdotal findings previously reported for individual model organisms. Moreover, they demonstrate the close link between basic research and collection activities here at DSMZ. As such, they also reflect DSMZ’s importance as one of the world’s leading resource centers for biological materials,” said Petersen.

The studies were supported by the Deutsche Forschungsgemeinschaft (DFG) and are part of the DFG Collaborative Research Center TRR51, “Roseobacter.” Results were recently published in Nature Publishing Group’s distinguished ISME Journal.

Further reading:
Original article:
Michael V, Frank O, Bartling P, Scheuner C, Göker M, Brinkmann H, Petersen J. (2016). Biofilm plasmids with a rhamnose operon are widely distributed determinants of the ʻswim-or-stickʼ lifestyle in roseobacers. ISME J [Epub ahead of print]. http://doi.org/10.1038/ismej.2016.30

Background:
Petersen J, Frank O, Göker M, Pradella S. (2013). Extrachromosomal, extraordinary and essential - the plasmids of the Roseobacter clade. Applied Microbiology and Biotechnology 97: 2805-2815.

Frank O, Michael V, Päuker O, Boedeker C, Jogler C, Rohde M, Petersen J. (2015). Plasmid curing and the loss of grip--the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Systematic and Applied Microbiology 38:120-127.

Scientific contact:
PD Dr. Jörn Petersen
Department Protists and Cyanobacteria (PuC)
Head of Projekt A5 „Plasmide“ Transregio Sonderforschungsbreich (TRR51)
Phone.: 0531 2616-209
Email: joern.petersen@dsmz.de

About Leibniz Institute DSMZ
The Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures GmbH is a Leibniz Association institution. Offering comprehensive scientific services and a wide range of biological materials it has been a partner for research and industry organizations worldwide for decades. DSMZ is one of the largest biological resource centers of its kind to be compliant with the internationally recognized quality norm ISO 9001:2008. As a patent depository, DSMZ currently offers the only option in Germany of accepting biological materials according to the requirements of the Budapest Treaty. The second major function of DSMZ, in addition to its scientific services, is its collection-related research. The Brunswick (Braunschweig), Germany, based collection has existed for 42 years and holds more than 52,000 cultures and biomaterials. DSMZ is the most diverse collection worldwide: In addition to fungi, yeasts, bacteria, and archea, it is home to human and animal cell cultures, plant viruses, and plan cell cultures that are archived and studied there. http://www.dsmz.de

Christian Engel | idw - Informationsdienst Wissenschaft

Further reports about: Biofilm DSMZ Marine biofilm formation biological materials plasmids strains

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>