Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microorganisms Getting a Grip — Plasmids Control Marine Biofilm Formation


Switching between mobile and sessile life styles is typical of many species of the bacteria of the Roseobacter group. Microbiologists at the Leibniz Institute DSMZ have now demonstrated that the genes responsible for this, usually are located outside the bacterial chromosome on a single plasmid. The study show that even characteristics as complex as the ability of biofilm formation can be passed on via horizontal gene transfer. Within the Roseobacter group, this has actually happened multiple times.

Their diverse metabolic characteristics make bacteria of the Roseobacter group some of the most abundant microorganisms in nutrient-rich coastal waters. Roseobacters together with other bacteria form highly complex biofilms that have been dubbed “cities of microbes”.

Phaeobacter inhibens DSM 17395 forming a biofilm

Leibniz Institute DSMZ

However, they can also be found swimming freely in the oceans. Switching between mobile and sessile life styles is typical of many species of these marine bacteria. This flexibility is based on their ability to actively move with the help of flagella, while they are also capable of reversibly attaching to surfaces.

Jörn Petersen, a microbiologist at the Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, in Braunschweig, Germany, and his colleagues have now demonstrated that the genes responsible for biofilm formation usually are located outside the bacterial chromosome on a single plasmid.

They reached this conclusion based on a physiological and genetic study of 33 Roseobacter strains. First, Petersen and colleagues showed that all bacteria that are efficient biofilm formers also are mobile. By removing the plasmids responsible for biofilm formation, they were able to demonstrate that the bacteria not only lost their ability of adhering to surfaces, but also their swimming capability.

“Thus, it is obvious that the responsible genes are located on these extrachromosomal elements,” said Petersen. Genes that are passed on via plasmids are able to cross the species boundary relatively easily. “Our studies show that even characteristics as complex as the ability of biofilm formation can be passed on via horizontal gene transfer,” said Petersen. Within the Roseobacter group, this type of horizontal gene transfer has actually happened multiple times, reflecting the great importance of plasmids for quick adaptation to new ecological niches.

The majority of the 33 Roseobacter strains studied were type strains, i.e., reference strains representative of the world’s bacterial diversity, which are archived in the DSMZ collection. Unlike previous studies, the DSMZ researchers genetically analyzed the group across its full evolutionary range. “Our present studies by far exceed anecdotal findings previously reported for individual model organisms. Moreover, they demonstrate the close link between basic research and collection activities here at DSMZ. As such, they also reflect DSMZ’s importance as one of the world’s leading resource centers for biological materials,” said Petersen.

The studies were supported by the Deutsche Forschungsgemeinschaft (DFG) and are part of the DFG Collaborative Research Center TRR51, “Roseobacter.” Results were recently published in Nature Publishing Group’s distinguished ISME Journal.

Further reading:
Original article:
Michael V, Frank O, Bartling P, Scheuner C, Göker M, Brinkmann H, Petersen J. (2016). Biofilm plasmids with a rhamnose operon are widely distributed determinants of the ʻswim-or-stickʼ lifestyle in roseobacers. ISME J [Epub ahead of print].

Petersen J, Frank O, Göker M, Pradella S. (2013). Extrachromosomal, extraordinary and essential - the plasmids of the Roseobacter clade. Applied Microbiology and Biotechnology 97: 2805-2815.

Frank O, Michael V, Päuker O, Boedeker C, Jogler C, Rohde M, Petersen J. (2015). Plasmid curing and the loss of grip--the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Systematic and Applied Microbiology 38:120-127.

Scientific contact:
PD Dr. Jörn Petersen
Department Protists and Cyanobacteria (PuC)
Head of Projekt A5 „Plasmide“ Transregio Sonderforschungsbreich (TRR51)
Phone.: 0531 2616-209

About Leibniz Institute DSMZ
The Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures GmbH is a Leibniz Association institution. Offering comprehensive scientific services and a wide range of biological materials it has been a partner for research and industry organizations worldwide for decades. DSMZ is one of the largest biological resource centers of its kind to be compliant with the internationally recognized quality norm ISO 9001:2008. As a patent depository, DSMZ currently offers the only option in Germany of accepting biological materials according to the requirements of the Budapest Treaty. The second major function of DSMZ, in addition to its scientific services, is its collection-related research. The Brunswick (Braunschweig), Germany, based collection has existed for 42 years and holds more than 52,000 cultures and biomaterials. DSMZ is the most diverse collection worldwide: In addition to fungi, yeasts, bacteria, and archea, it is home to human and animal cell cultures, plant viruses, and plan cell cultures that are archived and studied there.

Christian Engel | idw - Informationsdienst Wissenschaft

Further reports about: Biofilm DSMZ Marine biofilm formation biological materials plasmids strains

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>