Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microneedle vaccine patch boosts flu protection through robust skin cell immune response

06.03.2012
Recent research found that microneedle vaccine patches are more effective at delivering protection against influenza virus in mice than subcutaneous or intramuscular inoculation.

A new, detailed analysis of the early immune responses by the Emory and Georgia Tech research team helps explain why the skin is such fertile ground for vaccination with these tiny, virtually painless microneedles.

The research was published in the January/February issue of the online journal mBio.

The skin, in contrast to the muscles, contains a rich network of antigen-presenting cells, which are immune signaling cells that are essential to initiating an immune response. The researchers found that microneedle skin immunization with inactivated influenza virus resulted in a local increase of cytokines important for recruitment of neutrophils, monocytes and dendritic cells at the site of immunization. All these cells play a role in activating a strong innate immune response against the virus.

Microneedle vaccination also may lead to prolonged depositing of antigen – the viral molecules that are the targets of antibody responses. Such a prolonged antigen release could allow more efficient uptake by antigen-presenting cells. In addition, activated and matured dendritic cells carrying influenza antigen were found to migrate from the skin– an important feature of activating the adaptive immune response.

The research was led by first author Maria del Pilar Martin, PhD and Richard W. Compans, PhD, Emory professor of microbiology and immunology. Other authors included William C. Weldon, Dimitrios G. Koutsonanos, Hamed Akbari, Ioanna Skountzou, and Joshy Jacob from Emory University and Vladimir G. Zarnitsyn and Mark R. Prausnitz from Georgia Tech.

"Our research reveals new details of the complex but efficient immune response to influenza virus provided by microneedle skin patches," says Compans. "Despite the success of vaccination against influenza, the virus has many subtypes, mutates rapidly and continues to elude complete and long-term protection, and therefore requires annual vaccination with an updated vaccine each year.

"New vaccine formulations and delivery methods such as vaccine-coated microneedle patches could provide an improved protective response, which would be of particular benefit to those at high risk of related complications. Vaccine delivery to the skin by microneedles is painless, and offers other advantages such as eliminating potential risks due to use of hypodermic needles."

The studies were supported by grants from the National Institute of Allergy and Infectious Diseases (NIAID) and the National Institute of Biomedical Imaging and Bioengineering, which are part of the National Institutes of Health. Dr. Martin was supported by a fellowship from the Emory/UGA Influenza Pathogenesis and Immunology Research Center, a NIAID Center of Excellence for Influenza Research and Surveillance.

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focusing on teaching, research, health care and public service.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>