Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microfluidics-imaging platform detects cancer growth signaling in minute biopsy samples

02.11.2010
New method allows faster, more efficient screening for improved diagnostics

Inappropriate growth and survival signaling, which leads to the aberrant growth of cancer cells, is a driving force behind tumors. Much of current cancer research focuses on the kinase enzymes whose mutations are responsible for such disregulated signaling, and many successful molecularly targeted anti-cancer therapeutics are directed at inhibiting kinase activity.

Now, UCLA researchers from the Crump Institute for Molecular Imaging, the Institute for Molecular Medicine, the California NanoSystems Institute, the Jonsson Comprehensive Cancer Center and the department of molecular and medical pharmacology have developed an in vitro method for assessing kinase activity in minute tissue samples from patients. The method involves an integrated microfluidics and imaging platform that can reproducibly measure kinase enzymatic activity from as few as 3,000 cells.

In a paper published Nov. 1 in the journal Cancer Research, the UCLA researchers describe several new technological advances in microfluidics and imaging detection they co-developed to measure kinase activity in small-input samples. The team applied their microfluidic kinase assay to human leukemia patient samples.

"Because the device requires only a very small tissue sample to give results, this method creates new potential for direct kinase experimentation and diagnostics on patient blood, bone marrow and needle biopsy samples," said lead investigator Thomas Graeber, a UCLA professor of molecular and medical pharmacology. "For example, the stem cell properties of leukemia can be directly studied from patient samples."

To improve radio-signal detection, the team used a novel imaging detector, in the form of a solid-state beta camera, which can sensitively detect and spatially resolve radioactive signal directly from a microfluidic chip. The beta camera provides a picture of the activity on the chip, allowing real-time monitoring of the assay performance and outcome. It is highly sensitive and quantitative.

In their first application of the device, the team measured the activity of the mutated kinase responsible for chronic myelogenous leukemia. This mutation is targeted by the clinically successful kinase inhibitor Gleevec.

"We are not aware of other work demonstrating solid-state integrated radioactive imaging from a microfluidic platform," said co-investigator Arion Chatziioannou, a UCLA professor of molecular and medical pharmacology.

The resulting microfluidic in vitro kinase radioassay improves reaction efficiency, compared with standard assays, and can be processed in much less time. This greater efficiency, coupled with the high sensitivity of the beta camera, reduces the amount of sample cell input by two to three orders of magnitude, compared with conventional and 96-well assays. The assay includes a kinase immunocapture step to increase specificity towards the kinase of interest.

"To get the kinase assay to work in a microfluidic environment, we needed to develop new protocols and reagents for efficiently manipulating solid-support kinase capture beads using microfluidic trap-and-release valves," said co-investigator Hsian-Rong Tseng , a UCLA professor of molecular and medical pharmacology.

"Integration of the solid-state beta camera allows researchers to monitor the assay in real time, which proved useful during our protocol development and testing," said Cong Fang, the leading graduate student on the project. "The integrated microfluidic and imaging platform opens new possibilities and makes miniaturization of many common radioactivity-based bioassays to the microfluidic realm possible."

"With the integration of the compact camera, the microfluidic format assay has the potential to be developed into inexpensive bench-top, stand-alone units," said UCLA postdoctoral fellow Nam Vu, who led the imaging development.

"Taken together, the reduced sample input required, the decreased assay time, and the digitally controlled reproducibility of the team's microfluidic kinase radioassay facilitates direct experimentation on clinical samples that are either precious or perishable," said UCLA postdoctoral fellow Yanju Wang, who led the design of the network of microfluidic components that run the assay.

Future experiments will develop reproducible sample collection and measurement conditions for primary patient samples.

Other applications could include profiling of patient and animal model samples for their kinase-inhibitor drug sensitivity, or measurement of kinase activity from stem cells, cancer stem cells and other rare immune cells.

The research team included collaborators from Children's Hospital Los Angeles' division of hematology and oncology and the University of Southern California.

The California NanoSystems Institute at UCLA is an integrated research facility located at UCLA and UC Santa Barbara. Its mission is to foster interdisciplinary collaborations in nanoscience and nanotechnology; to train a new generation of scientists, educators and technology leaders; to generate partnerships with industry; and to contribute to the economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California. An additional $850 million of support has come from federal research grants and industry funding. CNSI members are drawn from UCLA's College of Letters and Science, the David Geffen School of Medicine, the School of Dentistry, the School of Public Health and the Henry Samueli School of Engineering and Applied Science. They are engaged in measuring, modifying and manipulating atoms and molecules — the building blocks of our world. Their work is carried out in an integrated laboratory environment. This dynamic research setting has enhanced understanding of phenomena at the nanoscale and promises to produce important discoveries in health, energy, the environment and information technology.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Jennifer Marcus | EurekAlert!
Further information:
http://wwww.ucla.edu

Further reports about: CNSI Cancer Molecular Target NanoSystems UCLA immune cell stem cells

More articles from Life Sciences:

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>