Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microfluidics-imaging platform detects cancer growth signaling in minute biopsy samples

02.11.2010
New method allows faster, more efficient screening for improved diagnostics

Inappropriate growth and survival signaling, which leads to the aberrant growth of cancer cells, is a driving force behind tumors. Much of current cancer research focuses on the kinase enzymes whose mutations are responsible for such disregulated signaling, and many successful molecularly targeted anti-cancer therapeutics are directed at inhibiting kinase activity.

Now, UCLA researchers from the Crump Institute for Molecular Imaging, the Institute for Molecular Medicine, the California NanoSystems Institute, the Jonsson Comprehensive Cancer Center and the department of molecular and medical pharmacology have developed an in vitro method for assessing kinase activity in minute tissue samples from patients. The method involves an integrated microfluidics and imaging platform that can reproducibly measure kinase enzymatic activity from as few as 3,000 cells.

In a paper published Nov. 1 in the journal Cancer Research, the UCLA researchers describe several new technological advances in microfluidics and imaging detection they co-developed to measure kinase activity in small-input samples. The team applied their microfluidic kinase assay to human leukemia patient samples.

"Because the device requires only a very small tissue sample to give results, this method creates new potential for direct kinase experimentation and diagnostics on patient blood, bone marrow and needle biopsy samples," said lead investigator Thomas Graeber, a UCLA professor of molecular and medical pharmacology. "For example, the stem cell properties of leukemia can be directly studied from patient samples."

To improve radio-signal detection, the team used a novel imaging detector, in the form of a solid-state beta camera, which can sensitively detect and spatially resolve radioactive signal directly from a microfluidic chip. The beta camera provides a picture of the activity on the chip, allowing real-time monitoring of the assay performance and outcome. It is highly sensitive and quantitative.

In their first application of the device, the team measured the activity of the mutated kinase responsible for chronic myelogenous leukemia. This mutation is targeted by the clinically successful kinase inhibitor Gleevec.

"We are not aware of other work demonstrating solid-state integrated radioactive imaging from a microfluidic platform," said co-investigator Arion Chatziioannou, a UCLA professor of molecular and medical pharmacology.

The resulting microfluidic in vitro kinase radioassay improves reaction efficiency, compared with standard assays, and can be processed in much less time. This greater efficiency, coupled with the high sensitivity of the beta camera, reduces the amount of sample cell input by two to three orders of magnitude, compared with conventional and 96-well assays. The assay includes a kinase immunocapture step to increase specificity towards the kinase of interest.

"To get the kinase assay to work in a microfluidic environment, we needed to develop new protocols and reagents for efficiently manipulating solid-support kinase capture beads using microfluidic trap-and-release valves," said co-investigator Hsian-Rong Tseng , a UCLA professor of molecular and medical pharmacology.

"Integration of the solid-state beta camera allows researchers to monitor the assay in real time, which proved useful during our protocol development and testing," said Cong Fang, the leading graduate student on the project. "The integrated microfluidic and imaging platform opens new possibilities and makes miniaturization of many common radioactivity-based bioassays to the microfluidic realm possible."

"With the integration of the compact camera, the microfluidic format assay has the potential to be developed into inexpensive bench-top, stand-alone units," said UCLA postdoctoral fellow Nam Vu, who led the imaging development.

"Taken together, the reduced sample input required, the decreased assay time, and the digitally controlled reproducibility of the team's microfluidic kinase radioassay facilitates direct experimentation on clinical samples that are either precious or perishable," said UCLA postdoctoral fellow Yanju Wang, who led the design of the network of microfluidic components that run the assay.

Future experiments will develop reproducible sample collection and measurement conditions for primary patient samples.

Other applications could include profiling of patient and animal model samples for their kinase-inhibitor drug sensitivity, or measurement of kinase activity from stem cells, cancer stem cells and other rare immune cells.

The research team included collaborators from Children's Hospital Los Angeles' division of hematology and oncology and the University of Southern California.

The California NanoSystems Institute at UCLA is an integrated research facility located at UCLA and UC Santa Barbara. Its mission is to foster interdisciplinary collaborations in nanoscience and nanotechnology; to train a new generation of scientists, educators and technology leaders; to generate partnerships with industry; and to contribute to the economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California. An additional $850 million of support has come from federal research grants and industry funding. CNSI members are drawn from UCLA's College of Letters and Science, the David Geffen School of Medicine, the School of Dentistry, the School of Public Health and the Henry Samueli School of Engineering and Applied Science. They are engaged in measuring, modifying and manipulating atoms and molecules — the building blocks of our world. Their work is carried out in an integrated laboratory environment. This dynamic research setting has enhanced understanding of phenomena at the nanoscale and promises to produce important discoveries in health, energy, the environment and information technology.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Jennifer Marcus | EurekAlert!
Further information:
http://wwww.ucla.edu

Further reports about: CNSI Cancer Molecular Target NanoSystems UCLA immune cell stem cells

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>