Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microfluidics-imaging platform detects cancer growth signaling in minute biopsy samples

02.11.2010
New method allows faster, more efficient screening for improved diagnostics

Inappropriate growth and survival signaling, which leads to the aberrant growth of cancer cells, is a driving force behind tumors. Much of current cancer research focuses on the kinase enzymes whose mutations are responsible for such disregulated signaling, and many successful molecularly targeted anti-cancer therapeutics are directed at inhibiting kinase activity.

Now, UCLA researchers from the Crump Institute for Molecular Imaging, the Institute for Molecular Medicine, the California NanoSystems Institute, the Jonsson Comprehensive Cancer Center and the department of molecular and medical pharmacology have developed an in vitro method for assessing kinase activity in minute tissue samples from patients. The method involves an integrated microfluidics and imaging platform that can reproducibly measure kinase enzymatic activity from as few as 3,000 cells.

In a paper published Nov. 1 in the journal Cancer Research, the UCLA researchers describe several new technological advances in microfluidics and imaging detection they co-developed to measure kinase activity in small-input samples. The team applied their microfluidic kinase assay to human leukemia patient samples.

"Because the device requires only a very small tissue sample to give results, this method creates new potential for direct kinase experimentation and diagnostics on patient blood, bone marrow and needle biopsy samples," said lead investigator Thomas Graeber, a UCLA professor of molecular and medical pharmacology. "For example, the stem cell properties of leukemia can be directly studied from patient samples."

To improve radio-signal detection, the team used a novel imaging detector, in the form of a solid-state beta camera, which can sensitively detect and spatially resolve radioactive signal directly from a microfluidic chip. The beta camera provides a picture of the activity on the chip, allowing real-time monitoring of the assay performance and outcome. It is highly sensitive and quantitative.

In their first application of the device, the team measured the activity of the mutated kinase responsible for chronic myelogenous leukemia. This mutation is targeted by the clinically successful kinase inhibitor Gleevec.

"We are not aware of other work demonstrating solid-state integrated radioactive imaging from a microfluidic platform," said co-investigator Arion Chatziioannou, a UCLA professor of molecular and medical pharmacology.

The resulting microfluidic in vitro kinase radioassay improves reaction efficiency, compared with standard assays, and can be processed in much less time. This greater efficiency, coupled with the high sensitivity of the beta camera, reduces the amount of sample cell input by two to three orders of magnitude, compared with conventional and 96-well assays. The assay includes a kinase immunocapture step to increase specificity towards the kinase of interest.

"To get the kinase assay to work in a microfluidic environment, we needed to develop new protocols and reagents for efficiently manipulating solid-support kinase capture beads using microfluidic trap-and-release valves," said co-investigator Hsian-Rong Tseng , a UCLA professor of molecular and medical pharmacology.

"Integration of the solid-state beta camera allows researchers to monitor the assay in real time, which proved useful during our protocol development and testing," said Cong Fang, the leading graduate student on the project. "The integrated microfluidic and imaging platform opens new possibilities and makes miniaturization of many common radioactivity-based bioassays to the microfluidic realm possible."

"With the integration of the compact camera, the microfluidic format assay has the potential to be developed into inexpensive bench-top, stand-alone units," said UCLA postdoctoral fellow Nam Vu, who led the imaging development.

"Taken together, the reduced sample input required, the decreased assay time, and the digitally controlled reproducibility of the team's microfluidic kinase radioassay facilitates direct experimentation on clinical samples that are either precious or perishable," said UCLA postdoctoral fellow Yanju Wang, who led the design of the network of microfluidic components that run the assay.

Future experiments will develop reproducible sample collection and measurement conditions for primary patient samples.

Other applications could include profiling of patient and animal model samples for their kinase-inhibitor drug sensitivity, or measurement of kinase activity from stem cells, cancer stem cells and other rare immune cells.

The research team included collaborators from Children's Hospital Los Angeles' division of hematology and oncology and the University of Southern California.

The California NanoSystems Institute at UCLA is an integrated research facility located at UCLA and UC Santa Barbara. Its mission is to foster interdisciplinary collaborations in nanoscience and nanotechnology; to train a new generation of scientists, educators and technology leaders; to generate partnerships with industry; and to contribute to the economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California. An additional $850 million of support has come from federal research grants and industry funding. CNSI members are drawn from UCLA's College of Letters and Science, the David Geffen School of Medicine, the School of Dentistry, the School of Public Health and the Henry Samueli School of Engineering and Applied Science. They are engaged in measuring, modifying and manipulating atoms and molecules — the building blocks of our world. Their work is carried out in an integrated laboratory environment. This dynamic research setting has enhanced understanding of phenomena at the nanoscale and promises to produce important discoveries in health, energy, the environment and information technology.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Jennifer Marcus | EurekAlert!
Further information:
http://wwww.ucla.edu

Further reports about: CNSI Cancer Molecular Target NanoSystems UCLA immune cell stem cells

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>