Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microfluidics: Bubble power

15.03.2012
The latest microfluidic chip can generate microbubbles to break open cells for biochemical analysis

Scientists have made many important discoveries in biology and medicine through studying the internal contents of cells. Some have isolated or identified nucleic acids or proteins with special functions, while others have unravelled the working and regulatory mechanisms underlying biochemical or pharmaceutical components within cells.


Micrographs of GFP-expressing bacteria before and after lysis

Dave Ow and co-workers at the A*STAR Bioprocessing Technology Institute and Institute of High Performance Computing have now developed a novel method to expose the internal contents of cells for biochemical analysis1.

Currently there is a wide range of methods to disintegrate or lyse cell membranes and to release the biomolecules contained within. However, most of these methods can cause denaturation of proteins or interfere with subsequent assaying. Ow and co-workers explored the possibility of using ultrasound in microfluidics to lyse cells. They applied short bursts of ultrasound with periods of rest to prevent the proteins from overheating as a result of dissipation of mechanical energy.

When the rapid changes of pressure generated with ultrasound are applied to a liquid, small bubbles are formed which oscillate in size and generate a cyclic shear stress. These rapidly oscillating bubbles generate a mini shockwave when they implode, which can be strong enough to cause the cell membrane to rupture. The researchers generated microbubbles in the meandering microfluidic channel by introducing a gas via a separate inlet to generate a gas–liquid interface and subsequently applying ultrasound to the system.

As a proof of principle, the researchers tested the performance of their microfluidic device on genetically engineered bacteria and yeast that express the green fluorescent protein. The researchers found that the bacteria are completely disintegrated after only 0.4 seconds of ultrasound exposure (see image). The concentration of DNA released from yeast cells reached a plateau after only one second exposure (which contained six bursts of ultrasound each of 0.154 seconds), indicating that most cells are successfully lysed. Importantly the temperature of the sample was shown not to rise above 3.3 °C. “The large surface to volume ratio of the microfluidic environment means that the small amount of heat that is generated rapidly diffuses away,” says Ow.

The researchers have proposed many ideas for applications. “In collaboration with another institute, we are developing a rapid and sensitive label-free optical method for on-chip detection of bioanalytes from lysed cells,” says Ow. “We also want to modify the device to break more difficult-to-lyse endospores, and to develop a rapid on-chip detection device to counter the threats of bioterrorism.”

The A*STAR-affiliated researchers contributing to this research are from the Bioprocessing Technology Institute and Institute of High Performance Computing.

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>