Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Microfluidic Palette’ May Paint Pictures of Bioprocesses

31.07.2009
Researchers at the National Institute of Standards and Technology (NIST) have created an innovative device called the “microfluidic palette” to produce multiple, steady-state chemical gradients—gradual changes in concentration across an area—in a miniature chamber about the diameter of a pinhead.

The masterpieces that spring from the talents of Rembrandt, Van Gogh and other artists often begin with the creation of a gradient of colors on a palette.

In a similar manner, researchers at the National Institute of Standards and Technology (NIST) have created an innovative device called the “microfluidic palette” to produce multiple, steady-state chemical gradients—gradual changes in concentration across an area—in a miniature chamber about the diameter of a pinhead. The tool can be used to study the complex biological mechanisms in cells responsible for cancer metastasis, wound healing, biofilm formation and other fluid-related processes.

The advantage of the NIST system, as described in a new paper,* is that the gradients are generated by diffusion—the gentle movement of matter from one point to another by random molecular motion. Microfluidic systems usually mix fluids more actively, by pumps and the circulation of currents. Diffusion gradients allow cells being studied to remain in the microchamber without the chance of their being swept away. Diffusion also permits chemical molecules to move in and out of the cells naturally and eliminates the risk of shear stresses, commonly produced by currents, which could cause the cells to rupture or behave abnormally.

The NIST microfluidic palette manages this with a clever plumbing trick. The key element of the palette is the microchamber, a small disk-shaped area only 1.5 millimeters (0.06 inch) across etched into the center of a glass wafer. Tiny holes at its circumference—three in the prototype, but it could be more—allow various mixtures to flow into the chamber. Beneath the chamber, each access port connects to the long tail of a Y-shaped channel etched into a second layer. These channels deliver test chemicals to the chamber. Fluid flow in and out of the short arms of each Y at constant pressure assures a constant stream of fresh chemicals. Because the pressure in the chamber is balanced by filling it previously with a buffer solution, the test chemicals that migrate from the channels into the chamber do so almost entirely by diffusion. Therefore, as long as a constant flow of fluid is maintained through the Y’s, the gradients in the chamber can be maintained virtually indefinitely.

To demonstrate how the microfluidic palette works, the NIST researchers inject dyes of the three primary colors—red, yellow and blue—separately into the three inlets of the system. For each dye, an independent gradient forms that remains constant as long as flow rate into the system does not change. Overlapping the three gradients results in a blend of dye concentrations in which the combination of colors at one location is distinctly different from any other location.

Similarly, if three separate drugs were injected into the palette where the microchamber contained a culture of cells, individual cells at different locations in the chamber would be exposed to different combinations of the drugs. In a single experiment, one could easily study the effects of a wide range of mixed drug concentrations on the same cell type.

Another potential application of the microfluidic palette is the study of chemotaxis, the movement of cells along a chemical gradient, a biological phenomenon that plays a role in the spread of cancer (metastasis), wound healing, infection and carbon cycling in the ocean.

The microfluidic palette technology is available for licensing. For more information, see the Federal Register, Vol. 74, No. 73, page 17819 (April 17, 2009).

* J. Atencia, J. Morrow and L.E. Locascio. The microfluidic palette: A diffusive gradient generator with spatio-temporal control. Lab on a Chip. Posted online June 22, 2009.

Michael E. Newman | Newswise Science News
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>