Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbiologists reveal unexpected properties of methane-producing microbe

19.11.2013
Derek Lovley's lab at UMass Amherst show for the first time that one of the most abundant methane-producing microorganisms on Earth makes direct electrical connections with another species to produce the gas in a completely unexpected way

For 40 years, scientists thought they understood how certain bacteria work together to anaerobically digest biomass to produce methane gas, important in bioenergy and the major source of greenhouse gas.


UMass Amherst microbiologists discovered that Methanosaeta have the ability to reduce carbon dioxide to methane by a remarkable mechanism in which they make electrical connections with other microorganisms, something methanogens have never been known to do before.

Credit: Dale Callahan and Amelia-Elena Rotaru

But now microbiologists in Derek Lovley's lab at the University of Massachusetts Amherst show for the first time that one of the most abundant methane-producing microorganisms on earth makes direct electrical connections with another species to produce the gas in a completely unexpected way.

Lovley and colleagues, including former postdoctoral researcher and first author Amelia-Elena Rotaru, describe the newly discovered properties of the methane-producing bacterium Methanosaeta in the current issue of the British Royal Society of Chemistry journal, Energy and Environmental Science.

"We discovered that Methanosaeta have the ability to reduce carbon dioxide (CO2) to methane," Lovley explains. "They do this by a remarkable mechanism in which they make electrical connections with other microorganisms, something methanogens have never been known to do before."

Methanosaeta species are important for a couple of reasons, Lovley and his co-authors point out. They are so active in methanogenic wetlands that they are considered the most prodigious methane producers on the planet. This is a concern because atmospheric methane is 20 times more effective at retaining heat than CO2, and as tundra soils warm due to climate change even greater methane releases are expected. Also, methane produced in anaerobic biomass digesters is economically important as "one of the few proven, economical, large-scale bioenergy strategies" in use today, they say.

Methane-producing microbial communities have been studied for decades, Lovley notes, "but all this time we were missing a major pathway of methane production." His group's study of Methanosaeta started when they found that digesters converting brewery wastes to methane contained large quantities of the microorganism Geobacter. Geobacter cannot produce methane, but it does break down more complex substrates to compounds that methane-producing bacteria can use.

The UMass Amherst teams knew from previous studies that Geobacter grow electrically conductive filaments known as microbial nanowires, which can transport electrons outside the cell to make electrical connections with minerals, electrodes or other cells. Methanosaeta were the dominant methane-producing microorganisms in the digesters and known to convert acetate to methane, but analysis of the gene expression in the digester revealed that Methanosaeta were also highly expressing genes for converting carbon dioxide to methane. The researchers speculated that Geobacter were feeding Methanosaeta electrons through their nanowires to promote Methanosaeta's methane production from CO2.

Further studies in which individual Geobacter and a Methanosaeta species were cultured together confirmed these suspicions, Lovley says. He and colleagues used radioactive tags to demonstrate that CO2 was being reduced to methane. They dubbed this transfer via microbial nanowire "direct interspecies electron transfer," or DIET. It was confirmed when they used a strain of Geobacter genetically altered to prevent it from producing nanowires, and the process did not work.

Lovely says the discovery of DIET challenges the concept held for decades that natural methane-producing microbial communities primarily exchange electrons through the production and consumption of hydrogen gas. DIET is a much more direct, and potentially more efficient mechanism for feeding electrons to methane-producing bacteria. "Now we need to improve predictions of how methane-producing microbial communities will respond to climate change. Microbial communities using DIET may react much differently than those that rely on hydrogen exchange," he says.

There are also short-term practical implications. "Once you realize that there are methane producers that can directly feed on electrons, you start thinking differently about how to optimize methane production from wastes," the microbiologist notes. "Although generating methane from wastes is one of the oldest bioenergy strategies and is practiced even in small villages in developing countries, its application on a large scale has been limited because it is slow." Trying to speed methane production in large-scale operations can disrupt the microbes' highly coordinated activity and systems can fail.

These communities evolved over billions of years to slowly convert organic matter to methane, Lovley explains. "Electrical circuitry that evolved for microbes to make methane from organic matter in swamps at their own leisurely pace may not match our wish for a faster process in waste digesters. Just as you need to upgrade electrical service in your house when you add more appliances, we made need to use synthetic biology or other engineering approaches to increase the capacity to move current through methanogenic microbial communities in digesters."

With the Massachusetts Department of Environmental Protection planning to begin in January 2014 phasing in a requirement that large-scale food service operations such as grocery stores, universities and correctional facilities compost food waste to increase diversion from landfills by 350,000 tons per year by 2020, anaerobic biodigesters may soon be very important to the state's business community. The new advances from UMass Amherst research could help to significantly improve their design and efficiency, Lovley notes.

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>