Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbiologists reveal unexpected properties of methane-producing microbe

19.11.2013
Derek Lovley's lab at UMass Amherst show for the first time that one of the most abundant methane-producing microorganisms on Earth makes direct electrical connections with another species to produce the gas in a completely unexpected way

For 40 years, scientists thought they understood how certain bacteria work together to anaerobically digest biomass to produce methane gas, important in bioenergy and the major source of greenhouse gas.


UMass Amherst microbiologists discovered that Methanosaeta have the ability to reduce carbon dioxide to methane by a remarkable mechanism in which they make electrical connections with other microorganisms, something methanogens have never been known to do before.

Credit: Dale Callahan and Amelia-Elena Rotaru

But now microbiologists in Derek Lovley's lab at the University of Massachusetts Amherst show for the first time that one of the most abundant methane-producing microorganisms on earth makes direct electrical connections with another species to produce the gas in a completely unexpected way.

Lovley and colleagues, including former postdoctoral researcher and first author Amelia-Elena Rotaru, describe the newly discovered properties of the methane-producing bacterium Methanosaeta in the current issue of the British Royal Society of Chemistry journal, Energy and Environmental Science.

"We discovered that Methanosaeta have the ability to reduce carbon dioxide (CO2) to methane," Lovley explains. "They do this by a remarkable mechanism in which they make electrical connections with other microorganisms, something methanogens have never been known to do before."

Methanosaeta species are important for a couple of reasons, Lovley and his co-authors point out. They are so active in methanogenic wetlands that they are considered the most prodigious methane producers on the planet. This is a concern because atmospheric methane is 20 times more effective at retaining heat than CO2, and as tundra soils warm due to climate change even greater methane releases are expected. Also, methane produced in anaerobic biomass digesters is economically important as "one of the few proven, economical, large-scale bioenergy strategies" in use today, they say.

Methane-producing microbial communities have been studied for decades, Lovley notes, "but all this time we were missing a major pathway of methane production." His group's study of Methanosaeta started when they found that digesters converting brewery wastes to methane contained large quantities of the microorganism Geobacter. Geobacter cannot produce methane, but it does break down more complex substrates to compounds that methane-producing bacteria can use.

The UMass Amherst teams knew from previous studies that Geobacter grow electrically conductive filaments known as microbial nanowires, which can transport electrons outside the cell to make electrical connections with minerals, electrodes or other cells. Methanosaeta were the dominant methane-producing microorganisms in the digesters and known to convert acetate to methane, but analysis of the gene expression in the digester revealed that Methanosaeta were also highly expressing genes for converting carbon dioxide to methane. The researchers speculated that Geobacter were feeding Methanosaeta electrons through their nanowires to promote Methanosaeta's methane production from CO2.

Further studies in which individual Geobacter and a Methanosaeta species were cultured together confirmed these suspicions, Lovley says. He and colleagues used radioactive tags to demonstrate that CO2 was being reduced to methane. They dubbed this transfer via microbial nanowire "direct interspecies electron transfer," or DIET. It was confirmed when they used a strain of Geobacter genetically altered to prevent it from producing nanowires, and the process did not work.

Lovely says the discovery of DIET challenges the concept held for decades that natural methane-producing microbial communities primarily exchange electrons through the production and consumption of hydrogen gas. DIET is a much more direct, and potentially more efficient mechanism for feeding electrons to methane-producing bacteria. "Now we need to improve predictions of how methane-producing microbial communities will respond to climate change. Microbial communities using DIET may react much differently than those that rely on hydrogen exchange," he says.

There are also short-term practical implications. "Once you realize that there are methane producers that can directly feed on electrons, you start thinking differently about how to optimize methane production from wastes," the microbiologist notes. "Although generating methane from wastes is one of the oldest bioenergy strategies and is practiced even in small villages in developing countries, its application on a large scale has been limited because it is slow." Trying to speed methane production in large-scale operations can disrupt the microbes' highly coordinated activity and systems can fail.

These communities evolved over billions of years to slowly convert organic matter to methane, Lovley explains. "Electrical circuitry that evolved for microbes to make methane from organic matter in swamps at their own leisurely pace may not match our wish for a faster process in waste digesters. Just as you need to upgrade electrical service in your house when you add more appliances, we made need to use synthetic biology or other engineering approaches to increase the capacity to move current through methanogenic microbial communities in digesters."

With the Massachusetts Department of Environmental Protection planning to begin in January 2014 phasing in a requirement that large-scale food service operations such as grocery stores, universities and correctional facilities compost food waste to increase diversion from landfills by 350,000 tons per year by 2020, anaerobic biodigesters may soon be very important to the state's business community. The new advances from UMass Amherst research could help to significantly improve their design and efficiency, Lovley notes.

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>