Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbiologists can now measure extremely slow life

20.03.2012
New method for measuring slow life in the seabed can provide knowledge about the global carbon cycle
"Mud samples boiled in acid sounds like witchcraft," admits microbiologist Bente Lomstein from the Department of Bioscience when explaining how she and an international group of researchers achieved the outstanding results being published today in the journal Nature.

Bacteria are the only living organisms to produce D-amino acids that deposit a chemical signature in the mud in which they live. Researchers at the Department of Bioscience and the Danish National Research Foundation's Center for Geomicrobiology at Aarhus University have used this knowledge together with American researchers to develop a method to calculate the activity level of microorganisms in the deepest layers of the seabed.

Metabolism in slow motion

Why should we worry about the small organisms that live hidden below the seabed of the world's oceans? Because the slowly growing bacteria are important for the global storage of organic carbon and thereby for the oxygen content of the atmosphere.

"Seventy per cent of our planet is covered by ocean, which means that seventy per cent of the planet is made up of seabed consisting of sediments that store old organic matter. In some places the deposits are more than one hundred metres thick, and ten to thirty per cent of the total living biomass on Earth is actually found in the mud in the seabed. The bacteria in the seabed convert the carbon of organic matter to CO2, and if we add it all up, the metabolism down there plays a crucial role in the global carbon cycle, even if it happens very slowly," says Associate Professor Lomstein.

The researchers' results show that the metabolism of organic carbon takes place at a much slower rate in the deep seabed compared with all other known ecosystems. The mean generation time of bacterial cells down there is correspondingly long: 1000-3000 years. In comparison, many of the bacteria that have been studied in the laboratory or in nature reproduce in a number of hours.

Life in extreme environments

"Extremely high pressure, total darkness and very little nutrition – those are the conditions under which microorganisms live on the seabed. At the bottom of the deep oceans, the pressure reaches several hundred atmospheres," explains Alice Thoft Langerhuus, one of the researchers behind the results.

The researchers also have an idea about how the bacteria can survive under such extreme conditions. They actually succeeded for the first time in demonstrating that there are just as many dormant cells as there are active ones. To a great extent, the bacteria therefore choose to form endospores, which have a solid 'shell' to protect themselves against the harsh environment.

The researchers combined organic biogeochemistry with microbiological studies, and their interdisciplinary model can also provide information about life in other extreme ecosystems.

"Our knowledge can be used in ancient environments with extremely low biological activity, such as permafrost soil. The method is particularly useful for detecting life in the most inactive environments," says Bente Lomstein.

Bente Aa. Lomstein | EurekAlert!
Further information:
http://www.au.dk

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>