Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbiologists can now measure extremely slow life

20.03.2012
New method for measuring slow life in the seabed can provide knowledge about the global carbon cycle
"Mud samples boiled in acid sounds like witchcraft," admits microbiologist Bente Lomstein from the Department of Bioscience when explaining how she and an international group of researchers achieved the outstanding results being published today in the journal Nature.

Bacteria are the only living organisms to produce D-amino acids that deposit a chemical signature in the mud in which they live. Researchers at the Department of Bioscience and the Danish National Research Foundation's Center for Geomicrobiology at Aarhus University have used this knowledge together with American researchers to develop a method to calculate the activity level of microorganisms in the deepest layers of the seabed.

Metabolism in slow motion

Why should we worry about the small organisms that live hidden below the seabed of the world's oceans? Because the slowly growing bacteria are important for the global storage of organic carbon and thereby for the oxygen content of the atmosphere.

"Seventy per cent of our planet is covered by ocean, which means that seventy per cent of the planet is made up of seabed consisting of sediments that store old organic matter. In some places the deposits are more than one hundred metres thick, and ten to thirty per cent of the total living biomass on Earth is actually found in the mud in the seabed. The bacteria in the seabed convert the carbon of organic matter to CO2, and if we add it all up, the metabolism down there plays a crucial role in the global carbon cycle, even if it happens very slowly," says Associate Professor Lomstein.

The researchers' results show that the metabolism of organic carbon takes place at a much slower rate in the deep seabed compared with all other known ecosystems. The mean generation time of bacterial cells down there is correspondingly long: 1000-3000 years. In comparison, many of the bacteria that have been studied in the laboratory or in nature reproduce in a number of hours.

Life in extreme environments

"Extremely high pressure, total darkness and very little nutrition – those are the conditions under which microorganisms live on the seabed. At the bottom of the deep oceans, the pressure reaches several hundred atmospheres," explains Alice Thoft Langerhuus, one of the researchers behind the results.

The researchers also have an idea about how the bacteria can survive under such extreme conditions. They actually succeeded for the first time in demonstrating that there are just as many dormant cells as there are active ones. To a great extent, the bacteria therefore choose to form endospores, which have a solid 'shell' to protect themselves against the harsh environment.

The researchers combined organic biogeochemistry with microbiological studies, and their interdisciplinary model can also provide information about life in other extreme ecosystems.

"Our knowledge can be used in ancient environments with extremely low biological activity, such as permafrost soil. The method is particularly useful for detecting life in the most inactive environments," says Bente Lomstein.

Bente Aa. Lomstein | EurekAlert!
Further information:
http://www.au.dk

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>