Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbiologists Find Defense Molecule That Senses Respiratory Viruses

25.08.2009
A cellular molecule that not only can sense two common respiratory viruses but also can direct cells to mount a defense has been identified by microbiologists at The University of Texas Health Science Center at San Antonio.

The finding, published online Sunday, Aug. 23, by the journal Nature Immunology, could lead to new therapies for human respiratory syncytial virus (RSV) and influenza A (commonly known as flu), both of which are serious threats to people with weak immune systems, particularly infants up to age 1 and senior citizens age 65 and older.

“This molecule could be used to boost host immune defenses and stimulate vaccine efficacy against RSV and influenza A, especially among high-risk individuals,” said senior author Santanu Bose, Ph.D., assistant professor of microbiology and immunology. Dr. Bose’s laboratory team includes graduate student Ahmed Sabbath and research scientists Te-Hung Chang and Rosalinda Harnack.

Related to survival

The cellular molecule, called NOD2, recognizes these viruses and can instruct cells to defend against them. Researchers found that mice lacking the sensor survive for only 10 days after infection, compared with up to eight weeks for normal animals.

Identifying this sensor and understanding its key role could result in therapies that activate the NOD2 gene during or prior to infection, leading to enhanced protective immunity. The NOD2 sensor also has the potential to recognize other viruses, such as West Nile virus, yellow fever, Ebola and rabies.

Dr. Bose has multiple grants from the National Institutes of Health and the American Lung Association to continue this line of research. “In the future, studies will gear up to find out if NOD2 is a susceptibility gene for respiratory viruses, since frequent mutation of this gene has been found in humans,” he said.

Potential clinical use

Once the study is designed and clinical partner affiliations are reached, the Bose team hopes to draw blood from severely infected, moderately infected and non-infected patients to test for levels of the sensor, which would allow predictions as to how individuals might respond to respiratory viral infections.

“This is a major breakthrough in understanding respiratory virus behavior and innate immune antiviral factors, and provides the basis for innovative therapies to improve host responses to infectious diseases,” said Joel Baseman, Ph.D., professor and chairman of microbiology and immunology at the Health Science Center.

Dr. Baseman said microbiology and immunology faculty members in the university’s Graduate School of Biomedical Sciences are doing fundamental and translational research that is the basis for the establishment of an airway disease research and vaccine center. The group includes Dr. Bose’s co-authors on the NOD2 paper, Peter Dube, Ph.D., and Yan Xiang, Ph.D.

About The University of Texas Health Science Center at San Antonio:

The University of Texas Health Science Center at San Antonio is the leading research institution in South Texas and one of the major health sciences universities in the world. With an operating budget of $668 million, the Health Science Center is the chief catalyst for the $16.3 billion biosciences and health care sector in San Antonio’s economy. The Health Science Center has had an estimated $36 billion impact on the region since inception and has expanded to six campuses in San Antonio, Laredo, Harlingen and Edinburg. More than 26,400 graduates (physicians, dentists, nurses, scientists and other health professionals) serve in their fields, including many in Texas. Health Science Center faculty are international leaders in cancer, cardiovascular disease, diabetes, aging, stroke prevention, kidney disease, orthopaedics, research imaging, transplant surgery, psychiatry and clinical neurosciences, pain management, genetics, nursing, dentistry and many other fields.

| Newswise Science News
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>