Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbial hair: It's electric

12.10.2010
Specialized bacterial filaments shown to conduct electricity

Some bacteria grow electrical hair that lets them link up in big biological circuits, according to a University of Southern California biophysicist and his collaborators.

The finding suggests that microbial colonies may survive, communicate and share energy in part through electrically conducting hairs known as bacterial nanowires.

"This is the first measurement of electron transport along biological nanowires produced by bacteria," said Mohamed El-Naggar, assistant professor of physics and astronomy at the USC College of Letters, Arts and Sciences.

El-Naggar was the lead author of a study appearing online next week in Proceedings of the National Academy of Sciences.

Knowing how microbial communities thrive is the first step in finding ways to destroy harmful colonies, such as biofilms on teeth. Biofilms have proven highly resistant to antibiotics.

The same knowledge could help to promote useful colonies, such as those in bacterial fuel cells under development at USC and other institutions.

"The flow of electrons in various directions is intimately tied to the metabolic status of different parts of the biofilm," El-Naggar said. "Bacterial nanowires can provide the necessary links … for the survival of a microbial circuit."

A bacterial nanowire looks like a long hair sticking out of a microbe's body. Like human hair, it consists mostly of protein.

To test the conductivity of nanowires, the researchers grew cultures of Shewanella oneidensis MR-1, a microbe previously discovered by co-author Kenneth Nealson, Wrigley Professor of Geobiology at USC College.

Shewanella tend to make nanowires in times of scarcity. By manipulating growing conditions, the researchers produced bacteria with plentiful nanowires.

The bacteria then were deposited on a surface dotted with microscopic electrodes. When a nanowire fell across two electrodes, it closed the circuit, enabling a flow of measurable current. The conductivity was similar to that of a semiconductor – modest but significant.

When the researchers cut the nanowire, the flow of current stopped.

Previous studies showed that electrons could move across a nanowire, which did not prove that nanowires conducted electrons along their length.

El-Naggar's group is the first to carry out this technically difficult but more telling experiment.

Electricity carried on nanowires may be a lifeline. Bacteria respire by losing electrons to an acceptor – for Shewanella, a metal such as iron. (Breathing is a special case: Humans respire by giving up electrons to oxygen, one of the most powerful electron acceptors.)

Nealson said of Shewanella: "If you don't give it an electron acceptor, it dies. It dies pretty rapidly."

In some cases, a nanowire may be a microbe's only means of dumping electrons.

When an electron acceptor is scarce nearby, nanowires may help bacteria to support each other and extend their collective reach to distant sources.

The researchers noted that Shewanella attach to electron acceptors as well as to each other, forming a colony in which every member should be able to respire through a chain of nanowires.

"This would be basically a community response to transfer electrons," El-Naggar explained. "It would be a form of cooperative breathing."

El-Naggar and his team are among the pioneers in a young discipline. The term "bacterial nanowire" was coined in 2006. Fewer than 10 studies on the subject have been published, according to co-author Yuri Gorby of The J. Craig Venter Institute in San Diego, discoverer of nanowires in Shewanella.

Gorby and others became interested in nanowires when they noticed that reduction of metals appeared to be occurring around the filaments. Since reduction requires the transfer of electrons to a metal, the researchers suspected that the filaments were carrying a current.

Nanowires also have been proposed as conductive pathways in several diverse microbes.

"The current hypothesis is that bacterial nanowires are in fact widespread in the microbial world," El-Naggar said.

Some have suggested that nanowires may help bacteria to communicate as well as to respire.

Bacterial colonies are known to share information through the slow diffusion of signaling molecules. Nealson argued that electron transport over nanowires would be faster and preferable for bacteria.

"You want the telegraph, you don't want smoke signals," he said.

Bacteria's communal strategy for survival may hold lessons for higher life forms.

In an op-ed published in Wired in 2009, Gorby wrote: "Understanding the strategies for efficient energy distribution and communication in the oldest organisms on the planet may serve as useful analogies of sustainability within our own species."

In addition to El-Naggar, Gorby and Nealson, the study's authors were Thomas Yuzvinsky of USC College; Greg Wanger of The J. Craig Venter Institute; and Kar Man Leung, Gordon Southam, Jun Yang and Woon Ming Lau from the University of Western Ontario.

Funding for the research came from the Air Force Office of Scientific Research, the U.S. Department of Energy, the Legler-Benbough Foundation, the J. Craig Venter Institute, the Canadian Natural Science and Engineering Research Council, the Canada Foundation for Innovation and Surface Science Western.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>