Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microbial genetic system dissects biomass to biofuel conversion

14.06.2010
A research team at the DOE Great Lakes Bioenergy Research Center (GLBRC) has developed a powerful new tool that promises to unlock the secrets of biomass degradation, a critical step in the development of cost-effective cellulosic biofuels. The details of this method were published online on June 11 in the journal Applied and Environmental Microbiology.

Fulfilling the promise of cellulosic biofuels requires developing efficient strategies to extract sugar molecules in biomass polymers like cellulose. Microorganisms such as bacteria and fungi are capable of converting biomass to simple sugars, but historically have been difficult to study using genetic approaches.

A breakthrough by a team of University of Wisconsin-Madison researchers at the GLBRC has made it possible to perform genetic analysis on Cellvibrio japonicus, a promising bacterium that has long been known to convert biomass to sugars. Using a technique called vector integration, the team has developed a method to generate a mutation in any gene within the organism.

As a test of the technique, the team constructed a mutation that inactivated a key component of a protein complex called a Type II Secretion System, and the disruption of this system prevented the bacterium from efficiently converting biomass into sugars. This proves for the first time that Cellvibrio uses the Type II Secretion System to secrete key enzymes for breakdown of biomass polymerase, thus providing key insight into how this bacterium obtains sugars from biomass.

"Realizing the promise of cellulosic biofuels requires identifying more efficient methods of releasing sugars from biomass", says GLBRC associate scientist David Keating, who led the team. "This new genetic method will allow us to understand how bacteria carry out this conversion, which should provide new avenues for improving the industrial process."

Plant cell wall deconstruction is a very complex process that requires a large number of enzymes, many with overlapping specificities, says Professor and Eminent Scholar in Bioenergy Harry Gilbert, of the University of Georgia's Complex Carbohydrate Research Center.

"As genetic systems for many bacteria that orchestrate this process have not been developed, the use of null mutations (inactivating specific genes) to explore the functional significance of specific enzymes has not been possible," says Gilbert. "Keating's group has provided the ability to do that — inactivate specific genes in Cellvibrio japonicus — which displays an extensive plant cell wall degrading apparatus. This enables you to ask critical biological questions about how the system is regulated and how the enzymes work together to degrade this hugely complex molecule. This is a substantial and important development in the field."

This project was funded by the DOE Great Lakes Bioenergy Research Center (GLBRC), one of three Department of Energy Bioenergy Research Centers funded to make transformational breakthroughs that will form the foundation of new cellulosic biofuels technology. The GLBRC is led by the University of Wisconsin-Madison, with Michigan State University as the major partner. Additional scientific partners are DOE National Laboratories, other universities and a biotechnology company.

David Keating | EurekAlert!
Further information:
http://www.wisc.edu
http://www.glbrc.org

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>