Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microbial genetic system dissects biomass to biofuel conversion

14.06.2010
A research team at the DOE Great Lakes Bioenergy Research Center (GLBRC) has developed a powerful new tool that promises to unlock the secrets of biomass degradation, a critical step in the development of cost-effective cellulosic biofuels. The details of this method were published online on June 11 in the journal Applied and Environmental Microbiology.

Fulfilling the promise of cellulosic biofuels requires developing efficient strategies to extract sugar molecules in biomass polymers like cellulose. Microorganisms such as bacteria and fungi are capable of converting biomass to simple sugars, but historically have been difficult to study using genetic approaches.

A breakthrough by a team of University of Wisconsin-Madison researchers at the GLBRC has made it possible to perform genetic analysis on Cellvibrio japonicus, a promising bacterium that has long been known to convert biomass to sugars. Using a technique called vector integration, the team has developed a method to generate a mutation in any gene within the organism.

As a test of the technique, the team constructed a mutation that inactivated a key component of a protein complex called a Type II Secretion System, and the disruption of this system prevented the bacterium from efficiently converting biomass into sugars. This proves for the first time that Cellvibrio uses the Type II Secretion System to secrete key enzymes for breakdown of biomass polymerase, thus providing key insight into how this bacterium obtains sugars from biomass.

"Realizing the promise of cellulosic biofuels requires identifying more efficient methods of releasing sugars from biomass", says GLBRC associate scientist David Keating, who led the team. "This new genetic method will allow us to understand how bacteria carry out this conversion, which should provide new avenues for improving the industrial process."

Plant cell wall deconstruction is a very complex process that requires a large number of enzymes, many with overlapping specificities, says Professor and Eminent Scholar in Bioenergy Harry Gilbert, of the University of Georgia's Complex Carbohydrate Research Center.

"As genetic systems for many bacteria that orchestrate this process have not been developed, the use of null mutations (inactivating specific genes) to explore the functional significance of specific enzymes has not been possible," says Gilbert. "Keating's group has provided the ability to do that — inactivate specific genes in Cellvibrio japonicus — which displays an extensive plant cell wall degrading apparatus. This enables you to ask critical biological questions about how the system is regulated and how the enzymes work together to degrade this hugely complex molecule. This is a substantial and important development in the field."

This project was funded by the DOE Great Lakes Bioenergy Research Center (GLBRC), one of three Department of Energy Bioenergy Research Centers funded to make transformational breakthroughs that will form the foundation of new cellulosic biofuels technology. The GLBRC is led by the University of Wisconsin-Madison, with Michigan State University as the major partner. Additional scientific partners are DOE National Laboratories, other universities and a biotechnology company.

David Keating | EurekAlert!
Further information:
http://www.wisc.edu
http://www.glbrc.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>