Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microbes in the Mariana Trench

Highly active communities of bacteria in the world’s deepest oceanic trench.
Sediments of the deepest trench on Earth, Challenger Deep in the Mariana Trench, shows surprisingly high microbial activity. An international research team led by Professor Ronnie Glud from the University of Southern Denmark involving Dr. Frank Wenzhöfer from the HGF-MPG Joint Research Group on Deep-Sea Ecology and Technology of the Max Planck Institute in Bremen and the Alfred Wegener Institute in Bremerhaven demonstrated that microbes are numerous and active in this high-pressure environment. Now they published their results in the scientific journal Nature Geoscience.

An international research team presents the first scientific results from one of the most inaccessible places on Earth: the bottom of the Mariana Trench in the western Pacific, located nearly 11000 meters below sea level, which makes it the deepest site on Earth. Their analyses document that a highly active bacteria community exists in the sediment of the trench - even though the environment is under extreme pressure almost 1,100 times higher than at sea level. The trench sediments are inhabited by almost 7 times more bacteria than in the sediments of the surrounding abyssal plain at a much shallower water depth of 6000 m.
Deep sea trenches are spots of high microbial activity

Deep sea trenches are spots for high microbial activity because they receive an unusually high flux of organic matter, made up of animal carcasses and sinking algae, originating from the surrounding shallower sea-bottom. Some of this material may become dislodged during earthquakes, and sink further down into the deepest regions of the trench. So, even though deep-sea trenches like the Mariana Trench only amount to about two percent of the World Ocean area, they have a relatively large impact on marine carbon balance - and thus on the global carbon cycle, says Professor Ronnie Glud from Nordic Center for Earth Evolution at the University of Southern Denmark. Together with his colleagues from Germany (HGF-MPG Research Group on Deep-Sea Ecology and Technology of the Max Planck Institute in Bremen and Alfred Wegener Institute in Bremerhaven), Japan (Japan Agency for Marine-Earth Science and Technology) , Scotland (Scottish Association for Marine Science) and Denmark (University of Copenhagen), he explored the microbial carbon turnover in the deepest trench of the oceans.
Technical challenges

The team measured the distribution of oxygen in these trench sediments and at a reference site situated at 6000 m, and took sediment cores with an autonomous coring device that was equipped with a video camera. “From the oxygen profiles we can calculate the microbial oxygen uptake”, says Dr. Frank Wenzhöfer, “Together with the organic carbon content of the seafloor we then can estimate the microbial activity in the sediment.” Of course, those measurements at great depths are technically and logistically challenging “If we retrieve samples from the seabed to investigate them in the laboratory, many of the microorganisms that have adapted to life at these extreme conditions will die, due to the changes in temperature and pressure. Therefore, we have developed instruments that autonomously can perform preprogrammed measuring routines directly on the seabed at the extreme pressure of the Marianas Trench”, says Ronnie Glud. The research team has, together with different companies, designed the underwater robot, which stands almost 4 m tall and weighs 600 kg. Among other things, the robot is equipped with ultrathin sensors that are gently inserted into the seabed to measure the distribution of oxygen at a high spatial resolution.

“Our videos from the bottom of the Mariana Trench confirm that there are very few large animals at these depths. Rather, we find a world dominated by microbes that are adapted to function effectively at conditions highly inhospitable to most higher organisms”, says Ronnie Glud.

Dr. Frank Wenzhöfer not only considers the research on deep sea trenches important for the assessment of their contribution to the global carbon cycle. “The deep sea trenches are some of the last remaining “white spots” on the world map. We are very interested in describing and understanding the unique bacterial communities that thrive in these exceptional environments. Moreover, we aim to understand if and how the microbial carbon turnover in the deep sea regulates our climate. Therefore, we are planning further expeditions to other deep sea trenches, for example to the Kermadec-Tonga Trench near Fiji in the Pacific.”

For further questions please contact

Professor Ronnie Glud, Nordic Center for Earth Evolution at the University of Southern Denmark.
+45 65 50 27 84, mobile: +45 60 11 19 13,
Dr. Frank Wenzhöfer, HGF-MPG Joint Research Group on Deep-Sea Ecology and Technology
Telefon: +49 (0) 421 2028 862

Or the press office
Dr. Rita Dunker +49 (0) 421 2028 856
Dr. Manfred Schlösser +49 (0) 421 2028 704

Original publication

High rate of microbial carbon turnover in sediments in the deepest oceanic trench on Earth, 2013. Ronnie N. Glud, FrankWenzhöfer, Mathias Middelboe, Kazumasa Oguri,

The deep sea lander
Frank Wenzhöfer

Robert Turnewitsch, Donald E. Canfield and Hiroshi Kitazato. Nature Geoscience

DOI: 10.1038/NGEO1773

Involved institutions

University of Southern Denmark, Nordic Centre for Earth Evolution, Odense, Denmark

Scottish Association for Marine Science, Scottish Marine Institute, Oban, UK

Greenland Climate Research Centre, Nuuk, Greenland

Max Planck Institute for marine Microbiology, Bremen, Germany

Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

University of Copenhagen, Marine Biological Section, Helsingør, Denmark

Japan Agency for Marine-Earth Science and Technology, Institute of Biogeosciences, Yokosuka, Japan

Japan Agency for Marine-Earth Science and Technology, Marine Technology and Engineering Center, Yokosuka, Japan

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>