Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes in the Mariana Trench

18.03.2013
Highly active communities of bacteria in the world’s deepest oceanic trench.
Sediments of the deepest trench on Earth, Challenger Deep in the Mariana Trench, shows surprisingly high microbial activity. An international research team led by Professor Ronnie Glud from the University of Southern Denmark involving Dr. Frank Wenzhöfer from the HGF-MPG Joint Research Group on Deep-Sea Ecology and Technology of the Max Planck Institute in Bremen and the Alfred Wegener Institute in Bremerhaven demonstrated that microbes are numerous and active in this high-pressure environment. Now they published their results in the scientific journal Nature Geoscience.

An international research team presents the first scientific results from one of the most inaccessible places on Earth: the bottom of the Mariana Trench in the western Pacific, located nearly 11000 meters below sea level, which makes it the deepest site on Earth. Their analyses document that a highly active bacteria community exists in the sediment of the trench - even though the environment is under extreme pressure almost 1,100 times higher than at sea level. The trench sediments are inhabited by almost 7 times more bacteria than in the sediments of the surrounding abyssal plain at a much shallower water depth of 6000 m.
Deep sea trenches are spots of high microbial activity

Deep sea trenches are spots for high microbial activity because they receive an unusually high flux of organic matter, made up of animal carcasses and sinking algae, originating from the surrounding shallower sea-bottom. Some of this material may become dislodged during earthquakes, and sink further down into the deepest regions of the trench. So, even though deep-sea trenches like the Mariana Trench only amount to about two percent of the World Ocean area, they have a relatively large impact on marine carbon balance - and thus on the global carbon cycle, says Professor Ronnie Glud from Nordic Center for Earth Evolution at the University of Southern Denmark. Together with his colleagues from Germany (HGF-MPG Research Group on Deep-Sea Ecology and Technology of the Max Planck Institute in Bremen and Alfred Wegener Institute in Bremerhaven), Japan (Japan Agency for Marine-Earth Science and Technology) , Scotland (Scottish Association for Marine Science) and Denmark (University of Copenhagen), he explored the microbial carbon turnover in the deepest trench of the oceans.
Technical challenges

The team measured the distribution of oxygen in these trench sediments and at a reference site situated at 6000 m, and took sediment cores with an autonomous coring device that was equipped with a video camera. “From the oxygen profiles we can calculate the microbial oxygen uptake”, says Dr. Frank Wenzhöfer, “Together with the organic carbon content of the seafloor we then can estimate the microbial activity in the sediment.” Of course, those measurements at great depths are technically and logistically challenging “If we retrieve samples from the seabed to investigate them in the laboratory, many of the microorganisms that have adapted to life at these extreme conditions will die, due to the changes in temperature and pressure. Therefore, we have developed instruments that autonomously can perform preprogrammed measuring routines directly on the seabed at the extreme pressure of the Marianas Trench”, says Ronnie Glud. The research team has, together with different companies, designed the underwater robot, which stands almost 4 m tall and weighs 600 kg. Among other things, the robot is equipped with ultrathin sensors that are gently inserted into the seabed to measure the distribution of oxygen at a high spatial resolution.

“Our videos from the bottom of the Mariana Trench confirm that there are very few large animals at these depths. Rather, we find a world dominated by microbes that are adapted to function effectively at conditions highly inhospitable to most higher organisms”, says Ronnie Glud.

Dr. Frank Wenzhöfer not only considers the research on deep sea trenches important for the assessment of their contribution to the global carbon cycle. “The deep sea trenches are some of the last remaining “white spots” on the world map. We are very interested in describing and understanding the unique bacterial communities that thrive in these exceptional environments. Moreover, we aim to understand if and how the microbial carbon turnover in the deep sea regulates our climate. Therefore, we are planning further expeditions to other deep sea trenches, for example to the Kermadec-Tonga Trench near Fiji in the Pacific.”

For further questions please contact

Professor Ronnie Glud, Nordic Center for Earth Evolution at the University of Southern Denmark.
rnglud@biology.sdu.dk
+45 65 50 27 84, mobile: +45 60 11 19 13,
Dr. Frank Wenzhöfer, HGF-MPG Joint Research Group on Deep-Sea Ecology and Technology fwenzhoe@mpi-bremen.de
Telefon: +49 (0) 421 2028 862

Or the press office
Dr. Rita Dunker rdunker@mpi-bremen.de +49 (0) 421 2028 856
Dr. Manfred Schlösser mschloes@mpi-bremen.de +49 (0) 421 2028 704

Original publication

High rate of microbial carbon turnover in sediments in the deepest oceanic trench on Earth, 2013. Ronnie N. Glud, FrankWenzhöfer, Mathias Middelboe, Kazumasa Oguri,

The deep sea lander
Frank Wenzhöfer

Robert Turnewitsch, Donald E. Canfield and Hiroshi Kitazato. Nature Geoscience

DOI: 10.1038/NGEO1773

Involved institutions

University of Southern Denmark, Nordic Centre for Earth Evolution, Odense, Denmark

Scottish Association for Marine Science, Scottish Marine Institute, Oban, UK

Greenland Climate Research Centre, Nuuk, Greenland

Max Planck Institute for marine Microbiology, Bremen, Germany

Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

University of Copenhagen, Marine Biological Section, Helsingør, Denmark

Japan Agency for Marine-Earth Science and Technology, Institute of Biogeosciences, Yokosuka, Japan

Japan Agency for Marine-Earth Science and Technology, Marine Technology and Engineering Center, Yokosuka, Japan

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>