Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes in the Mariana Trench

18.03.2013
Highly active communities of bacteria in the world’s deepest oceanic trench.
Sediments of the deepest trench on Earth, Challenger Deep in the Mariana Trench, shows surprisingly high microbial activity. An international research team led by Professor Ronnie Glud from the University of Southern Denmark involving Dr. Frank Wenzhöfer from the HGF-MPG Joint Research Group on Deep-Sea Ecology and Technology of the Max Planck Institute in Bremen and the Alfred Wegener Institute in Bremerhaven demonstrated that microbes are numerous and active in this high-pressure environment. Now they published their results in the scientific journal Nature Geoscience.

An international research team presents the first scientific results from one of the most inaccessible places on Earth: the bottom of the Mariana Trench in the western Pacific, located nearly 11000 meters below sea level, which makes it the deepest site on Earth. Their analyses document that a highly active bacteria community exists in the sediment of the trench - even though the environment is under extreme pressure almost 1,100 times higher than at sea level. The trench sediments are inhabited by almost 7 times more bacteria than in the sediments of the surrounding abyssal plain at a much shallower water depth of 6000 m.
Deep sea trenches are spots of high microbial activity

Deep sea trenches are spots for high microbial activity because they receive an unusually high flux of organic matter, made up of animal carcasses and sinking algae, originating from the surrounding shallower sea-bottom. Some of this material may become dislodged during earthquakes, and sink further down into the deepest regions of the trench. So, even though deep-sea trenches like the Mariana Trench only amount to about two percent of the World Ocean area, they have a relatively large impact on marine carbon balance - and thus on the global carbon cycle, says Professor Ronnie Glud from Nordic Center for Earth Evolution at the University of Southern Denmark. Together with his colleagues from Germany (HGF-MPG Research Group on Deep-Sea Ecology and Technology of the Max Planck Institute in Bremen and Alfred Wegener Institute in Bremerhaven), Japan (Japan Agency for Marine-Earth Science and Technology) , Scotland (Scottish Association for Marine Science) and Denmark (University of Copenhagen), he explored the microbial carbon turnover in the deepest trench of the oceans.
Technical challenges

The team measured the distribution of oxygen in these trench sediments and at a reference site situated at 6000 m, and took sediment cores with an autonomous coring device that was equipped with a video camera. “From the oxygen profiles we can calculate the microbial oxygen uptake”, says Dr. Frank Wenzhöfer, “Together with the organic carbon content of the seafloor we then can estimate the microbial activity in the sediment.” Of course, those measurements at great depths are technically and logistically challenging “If we retrieve samples from the seabed to investigate them in the laboratory, many of the microorganisms that have adapted to life at these extreme conditions will die, due to the changes in temperature and pressure. Therefore, we have developed instruments that autonomously can perform preprogrammed measuring routines directly on the seabed at the extreme pressure of the Marianas Trench”, says Ronnie Glud. The research team has, together with different companies, designed the underwater robot, which stands almost 4 m tall and weighs 600 kg. Among other things, the robot is equipped with ultrathin sensors that are gently inserted into the seabed to measure the distribution of oxygen at a high spatial resolution.

“Our videos from the bottom of the Mariana Trench confirm that there are very few large animals at these depths. Rather, we find a world dominated by microbes that are adapted to function effectively at conditions highly inhospitable to most higher organisms”, says Ronnie Glud.

Dr. Frank Wenzhöfer not only considers the research on deep sea trenches important for the assessment of their contribution to the global carbon cycle. “The deep sea trenches are some of the last remaining “white spots” on the world map. We are very interested in describing and understanding the unique bacterial communities that thrive in these exceptional environments. Moreover, we aim to understand if and how the microbial carbon turnover in the deep sea regulates our climate. Therefore, we are planning further expeditions to other deep sea trenches, for example to the Kermadec-Tonga Trench near Fiji in the Pacific.”

For further questions please contact

Professor Ronnie Glud, Nordic Center for Earth Evolution at the University of Southern Denmark.
rnglud@biology.sdu.dk
+45 65 50 27 84, mobile: +45 60 11 19 13,
Dr. Frank Wenzhöfer, HGF-MPG Joint Research Group on Deep-Sea Ecology and Technology fwenzhoe@mpi-bremen.de
Telefon: +49 (0) 421 2028 862

Or the press office
Dr. Rita Dunker rdunker@mpi-bremen.de +49 (0) 421 2028 856
Dr. Manfred Schlösser mschloes@mpi-bremen.de +49 (0) 421 2028 704

Original publication

High rate of microbial carbon turnover in sediments in the deepest oceanic trench on Earth, 2013. Ronnie N. Glud, FrankWenzhöfer, Mathias Middelboe, Kazumasa Oguri,

The deep sea lander
Frank Wenzhöfer

Robert Turnewitsch, Donald E. Canfield and Hiroshi Kitazato. Nature Geoscience

DOI: 10.1038/NGEO1773

Involved institutions

University of Southern Denmark, Nordic Centre for Earth Evolution, Odense, Denmark

Scottish Association for Marine Science, Scottish Marine Institute, Oban, UK

Greenland Climate Research Centre, Nuuk, Greenland

Max Planck Institute for marine Microbiology, Bremen, Germany

Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

University of Copenhagen, Marine Biological Section, Helsingør, Denmark

Japan Agency for Marine-Earth Science and Technology, Institute of Biogeosciences, Yokosuka, Japan

Japan Agency for Marine-Earth Science and Technology, Marine Technology and Engineering Center, Yokosuka, Japan

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>