Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes in Central Park soil: If they can make it there, they can make it anywhere

01.10.2014

Soil microbes that thrive in the deserts, rainforests, prairies and forests of the world can also be found living beneath New York City's Central Park, according to a surprising new study led by Colorado State University and the University of Colorado Boulder.

The research team analyzed 596 soil samples collected from across Central Park's 843 acres and discovered a stunning diversity of below-ground life, most of which had never been documented before.


A member of the research team takes a soil sample in Central Park.

Credit: Noah Fierer

Only 8.5 percent to 16.2 percent of the organisms discovered in the park soils, depending on their type, had been previously entered into existing databases that describe microbial life, according to the study results published today in the journal Proceedings of the Royal Society B.

"We found thousands of different organisms, and it was shocking how few had ever been described," said Noah Fierer, an associate professor of ecology and evolutionary biology at CU-Boulder and corresponding author of the study. "Not only do they not have a name, but we don't know anything about them. We don't know what sort of conditions they like to live under or what role they may play in soil habitat and soil fertility."

The study was led by Kelly Ramirez, a postdoctoral researcher at Colorado State University, now at the Netherlands Institute of Ecology in The Netherlands. Ramirez did her research in the Soil Biodiversity and Ecosystem Functioning Lab at CSU, headed by biology Professor Diana Wall, director of the School of Global Environmental Sustainability and a corresponding author on the study.

Other co-authors from CSU are soil science Professor Eugene Kelly and biology doctoral student Ashley Shaw. Other CU-Boulder co-authors are doctoral students Jonathan Leff and Christopher Steebock, and postdoctoral researcher Albert Barberan.

Wall, who will be speaking at the induction ceremony at the American Academy of Arts and Sciences later this month, said Ramirez's work uncovered another melting pot of diversity in New York City -- within the soil of Central Park.

"The soil microbes in Central Park benefit us, benefit soil health, and are linked tightly to the beauty of the trees and other plants we see," she said. "The nation's food, cities, clean air and water and economy are all dependent on healthy, fertile soils and that motivates us to understand this fascinating hidden life beneath our feet."

The scientists also compared the below-ground biodiversity in Central Park to 52 soil samples taken from locations spanning the globe, from Alaska to Antarctica. The team was surprised to find that the breadth of biodiversity beneath Central Park is similar to the biodiversity found across the world, from the frozen Artic tundra to hot deserts and nearly everything in between. The only area that did not have soil microbial communities that overlapped with the samples taken from Central Park was Antarctica, where Wall has done extensive research.

"If you want to find unique diversity and if you want to find a wide range of different below-ground organisms, you don't have to travel around the world," said Fierer, who is also a fellow at the Cooperative Institute for Research in Environmental Sciences. "You can walk across Central Park."

The types of plants and animals that are able to live in a particular biome, like the desert, are largely determined by the climate. But microbes appear to be more concerned about the environment in the soil, such as the acidity and the carbon availability, than how hot or dry the climate is. This allows diverse microbial communities to thrive wherever the soil conditions are equally diverse.

"No one would ever expect to find an overlap in the types of trees we see in Central Park and the type of trees we see in a tropical forest," Fierer said. "But that doesn't seem to be true for the microbes living in the soil. We found all these community types just within Central Park. Below-ground biodiversity doesn't follow the same rules as the plants and animals living above ground."

###

Co-authors of the study from other institutions are Scott Bates of the University of Minnesota; Jason Betley of Illumina UK; and Thomas Crowther, Emily Oldfield, and Mark Bradford of Yale University. The study was partially funded by the Winslow Foundation.

The full text of the paper can be found on the Royal Society website under Journal News, https://royalsociety.org/news/list/?type=journal .

Contact:
Kate Jeracki, Colorado State University external relations, 970-491-2658
Kate.jeracki@colostate.edu
OR
Laura Snider, CU-Boulder media relations, 303-735-0528
Laura.Snider@colorado.edu

Noah Fierer | Eurek Alert!

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>