Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes in Central Park soil: If they can make it there, they can make it anywhere

01.10.2014

Soil microbes that thrive in the deserts, rainforests, prairies and forests of the world can also be found living beneath New York City's Central Park, according to a surprising new study led by Colorado State University and the University of Colorado Boulder.

The research team analyzed 596 soil samples collected from across Central Park's 843 acres and discovered a stunning diversity of below-ground life, most of which had never been documented before.


A member of the research team takes a soil sample in Central Park.

Credit: Noah Fierer

Only 8.5 percent to 16.2 percent of the organisms discovered in the park soils, depending on their type, had been previously entered into existing databases that describe microbial life, according to the study results published today in the journal Proceedings of the Royal Society B.

"We found thousands of different organisms, and it was shocking how few had ever been described," said Noah Fierer, an associate professor of ecology and evolutionary biology at CU-Boulder and corresponding author of the study. "Not only do they not have a name, but we don't know anything about them. We don't know what sort of conditions they like to live under or what role they may play in soil habitat and soil fertility."

The study was led by Kelly Ramirez, a postdoctoral researcher at Colorado State University, now at the Netherlands Institute of Ecology in The Netherlands. Ramirez did her research in the Soil Biodiversity and Ecosystem Functioning Lab at CSU, headed by biology Professor Diana Wall, director of the School of Global Environmental Sustainability and a corresponding author on the study.

Other co-authors from CSU are soil science Professor Eugene Kelly and biology doctoral student Ashley Shaw. Other CU-Boulder co-authors are doctoral students Jonathan Leff and Christopher Steebock, and postdoctoral researcher Albert Barberan.

Wall, who will be speaking at the induction ceremony at the American Academy of Arts and Sciences later this month, said Ramirez's work uncovered another melting pot of diversity in New York City -- within the soil of Central Park.

"The soil microbes in Central Park benefit us, benefit soil health, and are linked tightly to the beauty of the trees and other plants we see," she said. "The nation's food, cities, clean air and water and economy are all dependent on healthy, fertile soils and that motivates us to understand this fascinating hidden life beneath our feet."

The scientists also compared the below-ground biodiversity in Central Park to 52 soil samples taken from locations spanning the globe, from Alaska to Antarctica. The team was surprised to find that the breadth of biodiversity beneath Central Park is similar to the biodiversity found across the world, from the frozen Artic tundra to hot deserts and nearly everything in between. The only area that did not have soil microbial communities that overlapped with the samples taken from Central Park was Antarctica, where Wall has done extensive research.

"If you want to find unique diversity and if you want to find a wide range of different below-ground organisms, you don't have to travel around the world," said Fierer, who is also a fellow at the Cooperative Institute for Research in Environmental Sciences. "You can walk across Central Park."

The types of plants and animals that are able to live in a particular biome, like the desert, are largely determined by the climate. But microbes appear to be more concerned about the environment in the soil, such as the acidity and the carbon availability, than how hot or dry the climate is. This allows diverse microbial communities to thrive wherever the soil conditions are equally diverse.

"No one would ever expect to find an overlap in the types of trees we see in Central Park and the type of trees we see in a tropical forest," Fierer said. "But that doesn't seem to be true for the microbes living in the soil. We found all these community types just within Central Park. Below-ground biodiversity doesn't follow the same rules as the plants and animals living above ground."

###

Co-authors of the study from other institutions are Scott Bates of the University of Minnesota; Jason Betley of Illumina UK; and Thomas Crowther, Emily Oldfield, and Mark Bradford of Yale University. The study was partially funded by the Winslow Foundation.

The full text of the paper can be found on the Royal Society website under Journal News, https://royalsociety.org/news/list/?type=journal .

Contact:
Kate Jeracki, Colorado State University external relations, 970-491-2658
Kate.jeracki@colostate.edu
OR
Laura Snider, CU-Boulder media relations, 303-735-0528
Laura.Snider@colorado.edu

Noah Fierer | Eurek Alert!

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>