Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes in the gut help determine risk of tumors

05.11.2013
Transferring the gut microbes from a mouse with colon tumors to germ-free mice makes those mice prone to getting tumors as well, according to the results of a study published in mBio®, the online open-access journal of the American Society for Microbiology. The work has implications for human health because it indicates the risk of colorectal cancer may well have a microbial component.

"We know that humans have a number of different community structures in the gut. When you think about it, maybe different people - independent of their genetics - might be predisposed," says Joseph Zackular of the University of Michigan, an author on the study.

Scientists have known for years that inflammation plays a role in the development of colorectal cancer, but this new information indicates that interactions between inflammation and subsequent changes in the gut microbiota create the conditions that result in colon tumors.

Co-author Patrick Schloss, also of the University of Michigan, was somewhat surprised by the clarity of the results.

"We saw more than two times the number of tumors in mice that received the cancerous community [than in mice that received a healthy gut community]," says Schloss. "That convinced us that it is the community that is driving tumorigenesis. It's not just the microbiome, it's not just the inflammation, it's both."

Known risk factors for developing colorectal cancer include consuming a diet rich in red meat, alcohol consumption, and chronic inflammation in the gastrointestinal tract (patients with inflammatory bowel diseases, such as ulcerative colitis, are at a greater risk of developing colorectal cancer, for instance). Cancer patients also exhibit shifts in the composition of their gut microbiota - a phenomenon called dysbiosis - but it's unclear whether changes in the microbiome drive the development of cancer or the cancer drives changes in the microbiome.

It's a question of the chicken and the egg, says Zackular. "Is this the microbiome of someone with cancer or is the microbiome driving tumorigenesis?"

Schloss, Zackular, and their colleagues reasoned that the composition, structure, and functional capacity of the gut microbiome all directly affect tumor development in the colon, so they set out to address this chicken-and-egg conundrum with mice. Using a tumor-inducing regimen, they induced the formation of colorectal tumors in a set of mice, then collected feces and bedding from those tumor-bearing mice and gave them over to germ-free mice. (Mice are coprophagic, so inoculating germ-free mice with a new gut microbiome is as easy as that.) They then administered the regimen to these new mice.

The results were stark: mice given the microbiota of the tumor-bearing mice had more than two times as many colon tumors as the mice given a healthy microbiota. What's more, normal mice that were given antibiotics before and after inoculation had significantly fewer tumors than the mice that got no antibiotics, and tumors that were present in these antibiotic-treated mice were significantly smaller than tumors in untreated mice. This suggests that specific populations of microorganisms were essential for the formation of tumors, so the researchers then drilled down into which groups of bacteria were present in the test animals and controls.

Looking at the microorganisms, they found that tumor-bearing mice harbored greater numbers of bacteria within the Bacteroides, Odoribacter, and Akkermansia genera, and decreased numbers of bacteria affiliated with members of the Prevotellaceae and Porphyromonadaceae families. Three weeks after they were inoculated with the communities from the tumor-bearing mice, the germ-free mice had a gut microbiome that was very similar to the tumor-bearing mice, and they had a greater abundance of the same bacterial groups associated with tumor-formation.

"In all these [mouse] models the inflammation is critical, but so is the change in the communities," says Schloss. "We liken it to a feed-forward type mechanism where the inflammation is changing the community and the community is inducing inflammation. They make each other worse to the point that you have higher rates of tumor formation."

To follow up on the work, Schloss and Zackular are now studying the functions of the groups that are and are not associated with tumor formation.

"If you can better understand what functions in the microbial community are important for protecting against tumor formation or making it worse, we can hopefully translate those results to humans to understand why people do or do not get colorectal cancer, to help develop therapeutics or dietary manipulations to reduce people's risk," says Schloss.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>