Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes Buy Low and Sell High

14.01.2014
Microbes set up their own markets, comparing bids for commodities, hoarding to obtain a better price, and generally behaving in ways more commonly associated with Wall Street than the microscopic world.

The idea that people make calculated decisions that allow them to obtain the most goods with the smallest amount of effort — a complex hypothesis called ‘economic man’ for short — often has been challenged. People sometimes make irrational decisions, they rarely possess sufficient information to make the best decision, and they sometimes act against their own economic self-interest, critics say.



But none of these critiques is as radical as the one advanced in the Jan. 13 online issue of Proceedings of the National Academy of Sciences (PNAS). Written by an international team of researchers, it was inspired by a workshop on biological markets (transactions in which partners, typically animals, exchange commodities for their mutual benefit) held at the Lorentz Center of the University of Leiden in The Netherlands in January. (Click here for agenda.)

The scientists asked themselves how far biological market theory, which has been used successfully to explain cooperative behavior in many species, could be extended. Could it be used to describe, for example, the exchange of commodities between organisms without any cognitive ability, such as microbes.

They could think of instances where single-celled organisms had been shown to avoid bad trading partners, build local business ties, diversify or specialize in a particular commodity, save for a rainy day, eliminate the competition and otherwise behave in ways that seem to follow market-based principles.

They concluded not only that microbes are economic actors, but also that microbial markets can be useful systems for testing questions about biological markets in general, such as the evolution of partner choice, responses to price fluctuations and the identification of market conditions that drive diversification or specialization.

They even foresee practical applications of the work. It might be possible, for example, to manipulate ‘market conditions’ in crop fields to drive nitrogen-fixing bacteria to trade more their commodity (a biologically available form of nitrogen) with crop plants.

“Creative insights are often easier when theories from one field are explored in a different system as we do here, applying economic concepts to microbial interactions,” said Joan Strassmann, PhD, the Charles Rebstock Professor of Biology in Arts & Sciences at Washington University in St. Louis, who participated in the workshop and helped write the PNAS paper.

“The microscopic nature of microbial systems means it is easy to misunderstand their interactions; an economic framework helps us focus on what is important,” said David Queller, PhD, the Spencer T. Olin Professor of Biology, another of the brainstorming scientists.

Microbial business practices
The idea of biological markets is not new. Biological market theory was first formulated in 1994, by two of the workshop participants, Ronald Noë, PhD, of Université de Strasbourg in France and Peter Hammerstein, PhD, of Institute for Theoretical Biology, Humboldt-Universität zu Berlin, in Germany

Scientists have long been aware that trades among a wide range of organisms are not blind exchanges but instead ones shaped by ‘market conditions’ such as price, quality and competition.

For example, cleaner fish, small fish that pick dead cells and mucus off of larger fish, provide a higher-quality cleaning service when competing cleaner fish are around.

What is new is the suggestion that single-celled organisms might participate in markets as well. Gijsbert Werner, a doctoral candidate at Vrijie Universiteit in Amsterdam, The Netherlands, and the first author of the PNAS paper, said that the requirements for the emergence of market behavior are fairly minimal.

“For biological markets to evolve, you actually only need that individuals can detect co-operators and respond by rewarding them with more resources,” Werner said. “This can work through automatic responses. Organisms without cognition, like microbes, are also capable of automatic economic responses.”

Impressively complex behavior can emerge from those automatic responses. Toby Kiers, PhD, professor of evolutonary interactions at Vrijie Universieit and the senior author on the paper, studies complex underground networks between plant roots and fungi associated with those roots, called mycorrhizal fungi. The plants supply the fungi with sugar in exchange for mineral nutrients such as phosphorus.

Kiers and her colleagues found that the fungi compare the resources on offer by different plants, and adjust their resource allocations accordingly.

Some fungi even hoard resources until they get a better deal. “We now see that such ‘playing of the market’ happens in microbes. Microbial traders can be ruthless, even using chemicals to actively elbow competitors out of the marketplace,” Kiers said.

The scientists expect that studying microbial exchange systems as miniature markets will give them insight into the many collaborative behaviors of microbes, helping to generate new hypotheses and approaches in the field of social microbiology.

And by comparing microbial markets and animal markets they will then be able to determine “which, if any, market features are specific to cognitive agents,” the scientists write.

So much for the egos of Wall Street traders.

Diana Lutz | Newswise
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>