Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes Buy Low and Sell High

14.01.2014
Microbes set up their own markets, comparing bids for commodities, hoarding to obtain a better price, and generally behaving in ways more commonly associated with Wall Street than the microscopic world.

The idea that people make calculated decisions that allow them to obtain the most goods with the smallest amount of effort — a complex hypothesis called ‘economic man’ for short — often has been challenged. People sometimes make irrational decisions, they rarely possess sufficient information to make the best decision, and they sometimes act against their own economic self-interest, critics say.



But none of these critiques is as radical as the one advanced in the Jan. 13 online issue of Proceedings of the National Academy of Sciences (PNAS). Written by an international team of researchers, it was inspired by a workshop on biological markets (transactions in which partners, typically animals, exchange commodities for their mutual benefit) held at the Lorentz Center of the University of Leiden in The Netherlands in January. (Click here for agenda.)

The scientists asked themselves how far biological market theory, which has been used successfully to explain cooperative behavior in many species, could be extended. Could it be used to describe, for example, the exchange of commodities between organisms without any cognitive ability, such as microbes.

They could think of instances where single-celled organisms had been shown to avoid bad trading partners, build local business ties, diversify or specialize in a particular commodity, save for a rainy day, eliminate the competition and otherwise behave in ways that seem to follow market-based principles.

They concluded not only that microbes are economic actors, but also that microbial markets can be useful systems for testing questions about biological markets in general, such as the evolution of partner choice, responses to price fluctuations and the identification of market conditions that drive diversification or specialization.

They even foresee practical applications of the work. It might be possible, for example, to manipulate ‘market conditions’ in crop fields to drive nitrogen-fixing bacteria to trade more their commodity (a biologically available form of nitrogen) with crop plants.

“Creative insights are often easier when theories from one field are explored in a different system as we do here, applying economic concepts to microbial interactions,” said Joan Strassmann, PhD, the Charles Rebstock Professor of Biology in Arts & Sciences at Washington University in St. Louis, who participated in the workshop and helped write the PNAS paper.

“The microscopic nature of microbial systems means it is easy to misunderstand their interactions; an economic framework helps us focus on what is important,” said David Queller, PhD, the Spencer T. Olin Professor of Biology, another of the brainstorming scientists.

Microbial business practices
The idea of biological markets is not new. Biological market theory was first formulated in 1994, by two of the workshop participants, Ronald Noë, PhD, of Université de Strasbourg in France and Peter Hammerstein, PhD, of Institute for Theoretical Biology, Humboldt-Universität zu Berlin, in Germany

Scientists have long been aware that trades among a wide range of organisms are not blind exchanges but instead ones shaped by ‘market conditions’ such as price, quality and competition.

For example, cleaner fish, small fish that pick dead cells and mucus off of larger fish, provide a higher-quality cleaning service when competing cleaner fish are around.

What is new is the suggestion that single-celled organisms might participate in markets as well. Gijsbert Werner, a doctoral candidate at Vrijie Universiteit in Amsterdam, The Netherlands, and the first author of the PNAS paper, said that the requirements for the emergence of market behavior are fairly minimal.

“For biological markets to evolve, you actually only need that individuals can detect co-operators and respond by rewarding them with more resources,” Werner said. “This can work through automatic responses. Organisms without cognition, like microbes, are also capable of automatic economic responses.”

Impressively complex behavior can emerge from those automatic responses. Toby Kiers, PhD, professor of evolutonary interactions at Vrijie Universieit and the senior author on the paper, studies complex underground networks between plant roots and fungi associated with those roots, called mycorrhizal fungi. The plants supply the fungi with sugar in exchange for mineral nutrients such as phosphorus.

Kiers and her colleagues found that the fungi compare the resources on offer by different plants, and adjust their resource allocations accordingly.

Some fungi even hoard resources until they get a better deal. “We now see that such ‘playing of the market’ happens in microbes. Microbial traders can be ruthless, even using chemicals to actively elbow competitors out of the marketplace,” Kiers said.

The scientists expect that studying microbial exchange systems as miniature markets will give them insight into the many collaborative behaviors of microbes, helping to generate new hypotheses and approaches in the field of social microbiology.

And by comparing microbial markets and animal markets they will then be able to determine “which, if any, market features are specific to cognitive agents,” the scientists write.

So much for the egos of Wall Street traders.

Diana Lutz | Newswise
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed
10.02.2016 | Universität Ulm

nachricht Chemical cages: New technique advances synthetic biology
10.02.2016 | Arizona State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>