Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not without my microbes

19.12.2012
After metamorphosis European forest cockchafers benefit from the same bacterial symbionts housed during their larval stage.

Apart from the common European cockchafer (Melolontha melolontha), the European forest cockchafer (Melolontha hippocastani) is the most common species of the Melolontha genus. These insects can damage huge areas of broadleaf trees and conifers in woodlands and on heaths. Cockchafers house microbes in their guts that help them to digest their woody food, such as lignocelluloses and xylans.


Forest cockchafer larva (grub) feeding on a carrot. Grubs feed underground on the roots of trees during their three- to five-year larval stage.

Erika Arias Cordero/MPI Chem. Ecol.


European forest cockchafer (Melolontha hippocastani)

Erika Arias Cordero/MPI Chem. Ecol.

Scientists of the Max Planck Institute for Chemical Ecology in Jena, Germany, have now performed comprehensive RNA analyses and identified the microbiota of cockchafer larvae feeding on roots and of the adult beetles feeding on leaves. Surprisingly, the guts of adult beetles house the same microbial species that were present in the larval midgut − despite having metamorphosized from larva to beetle. These microbes include clostridia as well as other bacterial species that are as yet unknown. Moreover, only a small percentage of the microbes living in the gut originated from the roots or leaves the larvae or beetles were feeding on. These microbes seem to be characteristic bacterial symbionts with which the forest cockchafer has long been associated. (PLoS ONE, December 10, 2012; doi:10.1371/journal.pone.0051557)

Metamorphosis is a fascinating process: A caterpillar or larva, feeding on roots below-ground or leaves above-ground (depending on the species), turns into a butterfly or a beetle after pupation and quiescence. The cylindrical bodies of larvae are quite unspectacular in comparison to the colorful and delicate butterflies. It is usually the larvae that cause the most damage and threaten agricultural and silvicultural yields by feeding on plants. Among these herbivores is the European forest cockchafer (Melolontha hippocastani), a major pest of trees.

During the pupal stage the insects stop feeding completely. A fundamental transformation starts, a radical internal conversion that changes every single larval organ. The tissue and organs of the larva are converted into the new organs of the beetle. Yet the metamorphosis of some insect species is still not completely understood. What happens to the gut microbes that are needed for digesting plant tissues and therefore important for the insect’s survival as soon as the larva is transformed? Are there any bacteria present in the gut of the new beetle and if so, which?

PhD candidate Erika Arias-Cordero from Costa Rica addressed these questions. Thanks to modern and sensitive detection methods, she was able to get an overview of the microbial species present in the guts of larvae and adult beetles. In so-called culture-independent studies, more than 300 individual RNA sequence segments were identified that were assigned to the different taxa of known classes of microbes. Sequences of bacterial ribosomal RNA (16S rRNA) were determined that could be distinguished from insect RNA (18S rRNA). “Using this method, we could be pretty sure we had identified all classes of microbes present in the gut. A typical microbiological approach, for which bacteria from the gut would have to be cultivated first, cannot guarantee this, because we do not know the culture media, especially for microbial species we do not know yet,” says the scientist.

A total of nine different classes of bacteria were found in the cockchafer gut: Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, actinobacteria, bacilli, clostridia, erysipelotrichi, negativicutes and sphingobacteria. Some are able to digest lignocelluloses and xylans, typical wood components. Interestingly, many classes of bacteria that were identified in the larval midgut were also found − after metamorphosis − in the gut of the adult cockchafer, even though the larval gut completely empties during the pupal stage. Moreover, Arias-Cordero found that the gut microbiome of the larvae overlaps only minimally with the microbiome of soil and root material. In other words, most microbes present in the larvae and beetles do not originate from the digested food. “This means that the forest cockchafer per se, that is, the larva hatching from the egg, e.g. via secretions passed from the mother, already has a basic set of bacterial symbionts which this insect species has co-evolved with over thousands of years,” explains Wilhelm Boland, director at the institute.

This result confirms again the assumption that all higher organisms, such as plants, insects and animals (including humans), are equipped with microbial symbionts. Without these beneficial microbes, we could not live and survive; they must be classified as an integral part of our body.

Larvae and beetles, as well as soil, root and leaf samples, were collected in forests near Mannheim and Iffezheim. The Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (Forest Research Center) in Freiburg and the Fritz Lipmann Institute in Jena were also involved in this research project. [JWK/AO]

Original Publication:
Arias-Cordero E, Ping L, Reichwald K, Delb H, Platzer M, Boland, W. (2012) Comparative evaluation of the gut microbiota associated with the below- and above-ground life stages (larvae and beetles) of the forest cockchafer, Melolontha hippocastani. PLoS ONE 7(12): e51557. DOI:10.1371/journal.pone.0051557

http://dx.doi.org/10.1371/journal.pone.0051557

Further Information:
Prof. Dr. Wilhelm Boland, MPI chemische Ökologie, boland@ice.mpg.de,
+49 (0)3641 57-1200

Picture and Movie Requests:
Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de
or Download via http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>