Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbe power as a green means to hydrogen fuel production

02.06.2010
Scientists have been hard at work harnessing the power of microbes as an attractive source of clean energy. Now, Biodesign Institute at Arizona State University researcher Dr. Prathap Parameswaran and his colleagues have investigated a means for enhancing the efficiency of clean energy production by using specialized bacteria.

Microbial electrochemical cells or MXCs are able to use bacterial respiration as a means of liberating electrons, which can be used to generate current and make clean electricity. With minor reconfiguring such devices can also carry out electrolysis, providing a green path to hydrogen production, reducing reliance on natural gas and other fossil fuels, now used for most hydrogen manufacture.

Dr. Prathap Parameswaran showing the electrode used in the microbial electrochemical cell (MEC). MXCs resemble a battery, with a Mason jar-sized chamber setup for each terminal. The bacteria are grown in the “positive” chamber (called the anode). The research team, led by Bruce Rittmann, director of Biodesign’s Center for Environmental Biotechnology, had previously shown that the bacteria are able to live and thrive on the anode electrode, and can use waste materials as food, (the bacteria’s dietary staples include pig manure or other farm waste) to grow while transferring electrons onto the electrode to make electricity.

In a microbial electrolysis cell (MEC), like that used in the current study, the electrons produced at the anode join positiviely charged protons in the negative (cathode) chamber to form hydrogen gas. “The reactions that happen at the MEC anode are the same as for a microbial fuel cell which is used to generate electricity, “ Parameswaran says. “The final output is different depending on how we operate it.”

When the bacteria are grown in an oxygen-free, or anaerobic environment, they attach to the MXC’s anode, forming a sticky matrix of sugar and protein. In such environments, when fed with organic compounds, an efficient partnership of bacteria gets established in the biofilm anode, consisting of fermenters, hydrogen scavengers, and anode respiring bacteria (ARB). This living matrix, known as the biofilm anode, is a strong conductor, able to efficiently transfer electrons to the anode where they follow a current gradient across to the cathode side.

The present study demonstrates that the level of electron flow from the anode to the cathode can be improved by selecting for additional bacteria known as homo-acetogens, in the anode chamber. Homo-acetogens capture the electrons from hydrogen in waste material, producing acetate, which is a very favorable electron donor for the anode bacteria.

The study shows that under favorable conditions, the anode bacteria could convert hydrogen to current more efficiently after forming a mutual relationship or syntrophy with homo-acetogens. The team was also able to reduce the negative impact of other hydogen consuming microbes, such as methane-producing methanogens, which otherwise steal some of the available electrons in the system, thereby reducing current. The selective inhibition of methanogens was accomplished by the adding a chemical called 2-bromoethane sulfonic acid to the adode’s microbial stew.

The group used both chemical and genomic methods to confirm the identify of homo-acetogens. In addition to detection of acetate, formate, an intermediary product, was also discovered. With the aid of quantitative PCR analysis, the team was also able to pick up the genomic signature of acetogens in the form of FTHFS, a gene specifically associated with acetogenesis.

“We were able to establish that these homo-acetogens can prevail and form relationships,” Parameswaran says. Future research will explore ways to sustain syntrophic relations between homo-acetogens and anode bacteria, in the absence of the chemical inhibitors.

Further progress could pave the way for eventual large-scale commercialization of systems to simultaneously treat wastewater and generate clean energy. “One of the biggest limitations right now is our lack of knowledge,” says Cesar Torres, one of the current study’s co-authors, who stresses that there remains much to understand about the interactions of bacterial communities within MXCs.

The field is still very young, Torres points out, noting that work on MXCs only began about 8 years ago. “I think over the next 5-10 years the community will bring a lot of information that will be really helpful and that will lead us to good applications.”

The team’s results appear in the advanced online issue of the journal Bioresource Technology.

Written by Richard Harth
Biodesign Institute Science Writer
richard.harth@asu.edu

Joe Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>