Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbe that can handle ionic liquids

15.05.2012
New find from Joint BioEnergy Institute could help reduce biofuel production costs

In the search for technology by which economically competitive biofuels can be produced from cellulosic biomass, the combination of sugar-fermenting microbes and ionic liquid solvents looks to be a winner save for one major problem: the ionic liquids used to make cellulosic biomass more digestible for microbes can also be toxic to them. A solution to this conundrum, however, may be in the offing.

Researchers with the U.S. Department of Energy (DOE)'s Joint BioEnergy Institute (JBEI), a multi-institutional partnership led by Berkeley Lab, have identified a tropical rainforest microbe that can endure relatively high concentrations of an ionic liquid used to dissolve cellulosic biomass. The researchers have also determined how the microbe is able to do this, a discovery that holds broad implications beyond the production of advanced biofuels.

"Our findings represent an important first step in understanding the mechanisms of ionic liquid resistance in bacteria and provide a basis for engineering ionic liquid tolerance into strains of fuel-producing microbes for a more efficient biofuel production process," says Blake Simmons, a chemical engineer who heads JBEI's Deconstruction Division and one of the senior investigators for this research.

Adds Michael Thelen, the principal investigator and a member of JBEI's Deconstruction Division, "Our study also demonstrates that vigorous efforts to discover and analyze the unique properties of microorganisms can provide an important basis for understanding microbial stress and adaptation responses to anthropogenic chemicals used in industry."

Thelen is the corresponding author and Simmons a co-author of a paper reporting the results of this research in the Proceedings of the National Academy of Sciences (PNAS). The paper is titled "Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus." Other co-authors are Jane Khudyakov, Patrik D'haeseleer, Sharon Borglin, Kristen DeAngelis, Hannah Wooa, Erika Lindquist and Terry Hazen.

The burning of fossil fuels releases nearly 9 billion metric tons of excess carbon into the atmosphere each year. Meanwhile the global demand for gasoline and other petroleum-based fuels continues to rise. Clean, green and renewable fuels that won't add excess carbon to the atmosphere are sorely needed. Among the best candidates are advanced biofuels synthesized from the cellulosic biomass in non-food plants. Such fuels could displace petroleum-based fuels on a gallon-for-gallon basis and be incorporated into today's vehicles and infrastructures with no impact on performance.

To this end, researchers at JBEI have already engineered a strain of E. coli bacteria to digest the cellulosic biomass of switchgrass, a perennial grass that thrives on land not suitable for food crops, and convert its sugars into biofuel replacements for gasoline, diesel and jet fuels. A key to this success was the pretreatment of the switchgrass with an ionic liquid to dissolve it.

"Unlike the starch sugars in grains, the complex polysaccharides in cellulosic biomass are semicrystalline and deeply embedded within a tough woody material called lignin," Simmons says. "Lignin can be removed and cellulose crystallinity can be reduced if the biomass is pretreated with ionic liquids, environmentally benign organic salts often used as green chemistry substitutes for volatile organic solvents."

Current strategies for processing cellulosic biomass into biofuels involve multiple production steps in which the bulk of ionic liquids used to pretreat biomass can be washed out before the microbes are added. However, to cut production costs, a "one pot" strategy in which processing steps take place in a single vat would be highly desirable. This strategy requires microbes that can tolerate and grow in ionic liquids used to pretreat cellulosic biomass.

In search of such microbes, a team of JBEI researchers led by microbiologist and PNAS paper co-author Kristen DeAngelis ventured into the El Yunque National Forest in Puerto Rico, a tropical rain forest where microbial communities have demonstrated exceptionally high rates of biomass decomposition, and a tolerance to high osmotic pressures of the sort generated by exposure to ionic liquids. They returned with a prime candidate in the SCF1 strain of Enterobacter lignolyticus.

"We first determined that the SCF1 strain of Enterobacter lignolyticus grows in the presence of the ionic liquid [C2mim]Cl at concentrations comparable to the concentrations that remain in the cellulose after pretreatment and recovery," Thelen says. "Next, through a combination of phenotypic growth assays, phospholipid fatty acid analysis, and RNA sequencing technologies, we investigated the mechanisms by which SCF1 tolerates this ionic liquid."

Working in collaboration with researchers at DOE's Joint Genome Institute, another multi-institutional partnership led by Berkeley Lab, Thelen and Simmons and their JBEI colleagues developed a preliminary model of ionic liquid tolerance for SCF1.

"Our model suggests that SCF1 bacteria resist the toxic effect of the [C2mim]Cl ionic liquid by altering the permeability of their cell membrane and pumping the toxic chemical out of the cell before damage occurs," Thelen says. "These detoxifying mechanisms are known to be involved in bacterial responses to stress, but not in a coordinated manner as we have shown for the response of SCF1 to ionic liquid."

Thelen says the information gained from this study will be used at JBEI to help engineer new fuel-producing microbes that can tolerate ionic liquid pretreatments. Beyond biofuels, the techniques developed in this study should also be applicable to the screening of microbial responses to other chemical compounds, such as antibiotics.

This work was supported by the DOE Office of Science.

Blake Simmons, in addition to his JBEI appointment, is also a scientist with the Sandia National Laboratory. Michael Thelen, in addition to his JBEI appointment, is also a scientist with the Lawrence Livermore National Laboratory.

JBEI is one of three Bioenergy Research Centers established by the DOE's Office of Science in 2007. It is a scientific partnership led by Berkeley Lab and includes the Sandia National Laboratories, the University of California campuses of Berkeley and Davis, the Carnegie Institution for Science, and the Lawrence Livermore National Laboratory. DOE's Bioenergy Research Centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the Unites States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>