Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For this microbe, cousins not particularly welcome

08.01.2010
A bacterial species that depends on cooperation to survive is discriminating when it comes to the company it keeps. Scientists from Indiana University Bloomington and Netherlands' Centre for Terrestrial Ecology have learned Myxococcus xanthus cells are able to recognize genetic differences in one another that are so subtle, even the scientists studying them must go to great lengths to tell them apart.

The scientists' report, which appears in a recent issue of Current Biology, also provides further evidence that cooperation in nature is not always a festival of peace and love. Rather, cooperation may be more of a grudging necessity, in which partners continually compete and undermine one another in a bid for evolutionary dominance.

"In some social microbes, cooperation is something that happens primarily among identical or very similar cells, as a way of competing against relatively unrelated individuals in other cooperative units," said IU Bloomington biologist Gregory Velicer, who led the research. "This is unlike humans, who are more likely to cooperate with unrelated individuals as well as with close kin. In the bacteria we study, cooperation appears to be highly restricted."

Myxococcus xanthus is a predatory bacterium that swarms through soil, killing and eating other microbes by secreting toxic and digestive compounds. When food runs out, cells aggregate and exchange chemical signals to form cooperative, multi-cellular "fruiting bodies." Some of the cells create the fruiting body's structure, while other cells are destined to become hardy spores for the purpose of surviving difficult conditions.

Previously, experiments by Velicer and Ph.D. student Francesca Fiegna showed that when different Myxococcus strains isolated from around the globe were mixed together, the number of spores produced was much reduced. This indicated that this social bacterium had diverged into many socially conflicting types. Michiel Vos, then a Ph.D. student with Velicer at the Max Planck Institute for Developmental Biology in Tübingen, Germany, set out to find whether Myxococcus bacteria sharing the same centimeter-scale soil patch were still capable of efficiently forming fruiting bodies together, or whether these close neighbors would already engage in social conflict.

As part of the experimental design for their Current Biology study, Velicer and Vos paired Myxococcus strains isolated from soil samples taken just centimeters apart to see whether they would behave cooperatively or competitively.

The scientists found that some pairs of strains, inhabiting the same patch of soil and almost identical genetically, had nevertheless diverged enough to inhibit each other's ability to make spores.

In general, however, the scientists found competition was less intense among centimeter-scale pairings than for pairings of more distantly related bacteria isolated from distant locations. These results indicate that social divergence can evolve rapidly within populations, but this divergence can be augmented by geographic isolation.

Another set of experiments revealed that different strains actively avoid each other prior to starvation-induced fruiting body formation. Velicer and Vos argue that this type of exclusion within diverse populations -- in which the probability of social conflict among neighbors is high -- may serve to direct the benefits of cooperation to close kin only.

Velicer says he plans to conduct an exhaustive search for specific genetic differences that lead to antagonism and social exclusion in pairing of closely related strains. "We've got lots of candidate genes," he said.

A long-term goal, Velicer explains, is to understand how new species of social bacteria might evolve sympatrically, that is, in a geographical area shared with a parental species.

"If strong social incompatibilities evolve rapidly, that has implications for understanding how interacting strains diverge over long periods of time," Velicer said.

The study was funded with grants from the National Institutes of Health, the Max Planck Society, the Deutsche Forschungsgemeinschaft, and the Netherlands Organisation for Scientific Research (Rubicon grant).

To speak with Velicer, please contact David Bricker, University Communicaitons, at 812-856-9035 or brickerd@indiana.edu. To speak with Vos, please e-mail michiel.vos@nioo.knaw.nl or call 011 31 26 479 12 05 (from the U.S. and Canada).

"Social Conflict in Centimeter- and Global-Scale Populations of the Bacterium Myxococcus xanthus," Current Biology, vol. 19, iss. 20

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>