Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micro-Swimmer Robots Could Deliver Cargo & Drugs

07.08.2012
When you’re just a few microns long, swimming can be difficult. At that size scale, the viscosity of water is more like that of honey, and momentum can’t be relied upon to maintain forward motion.

Microorganisms, of course, have evolved ways to swim in spite of these challenges, but tiny robots haven’t quite caught up. Now a team of researchers at the Georgia Institute of Technology has used complex computational models to design swimming micro-robots that could overcome these challenges to carry cargo and navigate in response to stimuli such as light.

When they’re actually built some day, these simple micro-swimmers could rely on volume changes in unique materials known as hydrogels to move tiny flaps that will propel the robots. The micro-devices could be used in drug delivery, lab-on-a-chip microfluidic systems – and even as micro-construction robots working in swarms.

The simple micro-swimmers were described July 23 in the online advance edition of the journal Soft Matter, published by the Royal Society of Chemistry in the United Kingdom.

“We believe that our simulations will give experimentalists a reason to pursue development of these micro-swimmers to go beyond what is available now,” said Alexander Alexeev, an assistant professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech. “We wanted to demonstrate the principle of how robots this small could move by determining what is important and what would need to be used to build a real system.”

The simple swimmer designed by Alexeev and collaborators Hassan Masoud and Benjamin Bingham consists of a responsive gel body about ten microns long with two propulsive flaps attached to opposite sides. A steering flap sensitive to specific stimuli would be located at the front of the swimmer.

The responsive gel body would undergo periodic expansions and contractions triggered by oscillatory chemical reactions, oscillating magnetic or electric fields, or by cycles of temperature change. These expansions and contractions – the chemical swelling and de-swelling of the material – would create a beating motion in the rigid propulsive flaps attached to each side of the micro-swimmer. Combined with the movement of the gel body, the beating motion would move the micro-swimmer forward.

The trajectory of the micro-swimmer would be controlled by a flexible steering flap on its front. The flap would be made of a material that deforms based on changes in light intensity, temperature or magnetic field.

“The combination of these flaps and the oscillating body creates a very nice motion that we believe can be used to propel the swimmer,” said Alexeev. “To build a device that is autonomous and self-propelling at the micron-scale, we cannot build a tiny submarine. We have to keep it simple.”

Key to the operation of the micro-swimmer would be the latest generation of hydrogels, materials whose volume changes in a cyclical way. The hydrogels would serve as “chemical engines” to provide the motion needed to move the device’s propulsive flaps. Such materials currently exist and are being improved upon for other applications.

“We are using the state-of-the art in materials science, changing the properties of the material,” explained Masoud, a Ph.D. candidate in the School of Mechanical Engineering. “We have combined the materials with the principles of hydrodynamics at the small scale to develop this new swimmer.”

As part of their modeling, the researchers examined the effects of flaps of different sizes and properties. They also studied how flexible the micro-swimmer’s body needed to be to produce the kind of movement needed for swimming.

“You can’t swim at the small scale in the same way you swim at the large scale,” Alexeev said. “There is no inertia, which is how you keep moving at the large scale. What happens at the small scale is counter-intuitive to what you expect at the large scale.”

The computational fluid modeling the researchers used allowed them to study a wide range of parameters in materials, oscillation rates and flexibility. What they learned, Alexeev said, will give experimentalists a starting point for actually building prototypes of the flexible gel robots.

“We have captured the solid mechanics of the periodically-oscillating body, the fluid dynamics of moving through the viscous liquid, and the coupling between the two,” he said. “From a computational fluid dynamics standpoint, it’s not an easy problem to model at this scale.”

Ultimately, the researchers hope to work with an experimental team to actually build the micro-swimmers. Combining their theoretical work with actual experiments could be a powerful approach to building robots on this size scale.

“This is a simulation that we hope to see in real life one day,” Alexeev said. “We have learned how experimentalists can pursue fabrication of these devices without extensive trial-and-error. We can use the simulations to look inside what will happen by using the laws of physics to explain it.”

The researchers envision groups of micro-swimmers carrying cargo through microfluidic chips or other devices. Swarms of them could one day work together as tiny construction robots moving materials to desired locations for assembly.

But the micro-swimmers won’t win any Olympic competitions. Alexeev estimates that their top speed could be on the order of a few micrometers per second – which should be enough to accomplish their mission.

“If your body is micrometers in size, that kind of speed is really not too bad,” he said. “The swimming speed will be rather slow, but at that size scale, you don’t really need to go very fast since you only need to go short distances.”

Citation: Hassan Masoud, Benjamin I. Bingham and Alexander Alexeev, Soft Matter, 2012, Advance Article. DOI: 10.1039/C2SM25898F.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 309
Atlanta, Georgia 30308 USA
Media Relations Contact: John Toon (404-894-6986)(jtoon@gatech.edu).
Writer: John Toon

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>