Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micro-RNA blocks the effect of insulin in obesity

01.04.2011
Body weight influences the risk of developing diabetes: between 80 and 90 percent of patients with type 2 diabetes are overweight or obese.

According to scientists at the Max Planck Institute for Neurological Research in Cologne and the Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), short ribonucleic acid molecules, known as micro-RNAs, appear to play an important role in this mechanism.

The researchers discovered that the obese mice form increased levels of the regulatory RNA molecule miRNA-143. miRNA-143 inhibits the insulin-stimulated activation of the enzyme AKT. Without active AKT, insulin cannot unfold its blood-sugar-reducing effect and the blood sugar level is thrown out of kilter. This newly discovered mechanism could provide the starting point for the development of new drugs for the treatment of diabetes.

The hormone insulin plays a key role in the regulation of blood sugar levels. If there is too much glucose in the blood, insulin opens the glucose transport channels in the cell membrane of muscles and fat cells. Glucose then reaches the body's cells and the blood's sugar content sinks. Additionally, the insulin inhibits the production of new sugar in the liver. Type 2 diabetics are able to produce sufficient volumes of insulin; however, their cells are resistant to it - and the hormone is unable to fulfil its task. If untreated, this disease damages the blood vessels due to the raised blood sugar levels, which can lead to a heart attack or stroke.

The molecular processes in the body's cells responsible for the connection between body weight and diabetes are largely unknown. However, in all tissues that respond to insulin, Micro-RNAs can be found. The Cologne-based scientists working with Jens Brüning, Director at the Max Planck Institute for Neurological Research and scientific coordinator of the Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases at the University of Cologne assume, therefore, that micro-RNAs may also play a role in type 2 diabetes. These short ribonucleic acid molecules can regulate the activity of genes and thus control protein production.

The research group in Cologne has now discovered a new mechanism that leads to insulin resistance of the cells. Accordingly, obese mice form excess miRNA-143 in their livers. This RNA molecule silences genes that are responsible for the activation of the enzyme AKT and therefore inhibits insulin from activating AKT. "AKT is important for glucose transport in the cell and for the inhibition of glucose synthesis in the liver. When the enzyme is inhibited, insulin fails to take effect and the blood sugar remains elevated," explains Jens Brüning.

For their research study, the researchers compared normal weight mice with obese mice with type 2 diabetes. They discovered that the diseased animals produce more than twice as much miRNA-143 in their livers than the normal ones. Moreover, the researchers found only a low concentration of the protein ORP8 in the obese mice which formed large quantities of miRNA-143. ORP8 stimulates insulin to activate AKT and therefore reduces the sugar content of the blood. If ORP8 is lacking, insulin is unable to take effect and the AKT remains inactive.

The researchers do not yet know why obese mice form more miRNA-143 than their normal weight counterparts. "If we succeed in explaining the signalling paths in the cell that lead to the production of miRNA-143, we will have a starting point for the development of new drugs for the treatment of type 2 diabetes," explains Jens Brüning in reference to future research plans.

Dr. Cornelia Weigelt | EurekAlert!
Further information:
http://www.nf.mpg.de

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>