Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micro-RNA blocks the effect of insulin in obesity

01.04.2011
Body weight influences the risk of developing diabetes: between 80 and 90 percent of patients with type 2 diabetes are overweight or obese.

According to scientists at the Max Planck Institute for Neurological Research in Cologne and the Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), short ribonucleic acid molecules, known as micro-RNAs, appear to play an important role in this mechanism.

The researchers discovered that the obese mice form increased levels of the regulatory RNA molecule miRNA-143. miRNA-143 inhibits the insulin-stimulated activation of the enzyme AKT. Without active AKT, insulin cannot unfold its blood-sugar-reducing effect and the blood sugar level is thrown out of kilter. This newly discovered mechanism could provide the starting point for the development of new drugs for the treatment of diabetes.

The hormone insulin plays a key role in the regulation of blood sugar levels. If there is too much glucose in the blood, insulin opens the glucose transport channels in the cell membrane of muscles and fat cells. Glucose then reaches the body's cells and the blood's sugar content sinks. Additionally, the insulin inhibits the production of new sugar in the liver. Type 2 diabetics are able to produce sufficient volumes of insulin; however, their cells are resistant to it - and the hormone is unable to fulfil its task. If untreated, this disease damages the blood vessels due to the raised blood sugar levels, which can lead to a heart attack or stroke.

The molecular processes in the body's cells responsible for the connection between body weight and diabetes are largely unknown. However, in all tissues that respond to insulin, Micro-RNAs can be found. The Cologne-based scientists working with Jens Brüning, Director at the Max Planck Institute for Neurological Research and scientific coordinator of the Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases at the University of Cologne assume, therefore, that micro-RNAs may also play a role in type 2 diabetes. These short ribonucleic acid molecules can regulate the activity of genes and thus control protein production.

The research group in Cologne has now discovered a new mechanism that leads to insulin resistance of the cells. Accordingly, obese mice form excess miRNA-143 in their livers. This RNA molecule silences genes that are responsible for the activation of the enzyme AKT and therefore inhibits insulin from activating AKT. "AKT is important for glucose transport in the cell and for the inhibition of glucose synthesis in the liver. When the enzyme is inhibited, insulin fails to take effect and the blood sugar remains elevated," explains Jens Brüning.

For their research study, the researchers compared normal weight mice with obese mice with type 2 diabetes. They discovered that the diseased animals produce more than twice as much miRNA-143 in their livers than the normal ones. Moreover, the researchers found only a low concentration of the protein ORP8 in the obese mice which formed large quantities of miRNA-143. ORP8 stimulates insulin to activate AKT and therefore reduces the sugar content of the blood. If ORP8 is lacking, insulin is unable to take effect and the AKT remains inactive.

The researchers do not yet know why obese mice form more miRNA-143 than their normal weight counterparts. "If we succeed in explaining the signalling paths in the cell that lead to the production of miRNA-143, we will have a starting point for the development of new drugs for the treatment of type 2 diabetes," explains Jens Brüning in reference to future research plans.

Dr. Cornelia Weigelt | EurekAlert!
Further information:
http://www.nf.mpg.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>