Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micro-RNA blocks the effect of insulin in obesity

01.04.2011
Body weight influences the risk of developing diabetes: between 80 and 90 percent of patients with type 2 diabetes are overweight or obese.

According to scientists at the Max Planck Institute for Neurological Research in Cologne and the Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), short ribonucleic acid molecules, known as micro-RNAs, appear to play an important role in this mechanism.

The researchers discovered that the obese mice form increased levels of the regulatory RNA molecule miRNA-143. miRNA-143 inhibits the insulin-stimulated activation of the enzyme AKT. Without active AKT, insulin cannot unfold its blood-sugar-reducing effect and the blood sugar level is thrown out of kilter. This newly discovered mechanism could provide the starting point for the development of new drugs for the treatment of diabetes.

The hormone insulin plays a key role in the regulation of blood sugar levels. If there is too much glucose in the blood, insulin opens the glucose transport channels in the cell membrane of muscles and fat cells. Glucose then reaches the body's cells and the blood's sugar content sinks. Additionally, the insulin inhibits the production of new sugar in the liver. Type 2 diabetics are able to produce sufficient volumes of insulin; however, their cells are resistant to it - and the hormone is unable to fulfil its task. If untreated, this disease damages the blood vessels due to the raised blood sugar levels, which can lead to a heart attack or stroke.

The molecular processes in the body's cells responsible for the connection between body weight and diabetes are largely unknown. However, in all tissues that respond to insulin, Micro-RNAs can be found. The Cologne-based scientists working with Jens Brüning, Director at the Max Planck Institute for Neurological Research and scientific coordinator of the Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases at the University of Cologne assume, therefore, that micro-RNAs may also play a role in type 2 diabetes. These short ribonucleic acid molecules can regulate the activity of genes and thus control protein production.

The research group in Cologne has now discovered a new mechanism that leads to insulin resistance of the cells. Accordingly, obese mice form excess miRNA-143 in their livers. This RNA molecule silences genes that are responsible for the activation of the enzyme AKT and therefore inhibits insulin from activating AKT. "AKT is important for glucose transport in the cell and for the inhibition of glucose synthesis in the liver. When the enzyme is inhibited, insulin fails to take effect and the blood sugar remains elevated," explains Jens Brüning.

For their research study, the researchers compared normal weight mice with obese mice with type 2 diabetes. They discovered that the diseased animals produce more than twice as much miRNA-143 in their livers than the normal ones. Moreover, the researchers found only a low concentration of the protein ORP8 in the obese mice which formed large quantities of miRNA-143. ORP8 stimulates insulin to activate AKT and therefore reduces the sugar content of the blood. If ORP8 is lacking, insulin is unable to take effect and the AKT remains inactive.

The researchers do not yet know why obese mice form more miRNA-143 than their normal weight counterparts. "If we succeed in explaining the signalling paths in the cell that lead to the production of miRNA-143, we will have a starting point for the development of new drugs for the treatment of type 2 diabetes," explains Jens Brüning in reference to future research plans.

Dr. Cornelia Weigelt | EurekAlert!
Further information:
http://www.nf.mpg.de

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>