Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micro-Patchwork Family

21.02.2014
3D construction: microparticles made of three chemically independent patches

Micromachines, nanorobots, multifunctional drug transporters, and matrices for tissue growth – these and many other applications would benefit from three-dimensional microstructures that present different (bio)chemical ligands that offer control over directionality.



In the journal Angewandte Chemie, a team of German and American researchers has now reported the production of microparticles whose surface consists of three separate areas (“patches”) that can be decorated with three different (bio)molecules.

“While the spatially controlled presentation of chemical and biological ligands is well established for two-dimensional substrates, very few methodologies exist for the spatially controlled decoration of three-dimensional objects, such as microparticles,” explains Jörg Lahann (University of Michigan, USA and Karlsruhe Institute of Technology). “Such structures would be very useful for many different applications, such as the controlled interaction of particles with biological cells for tissue growth.”

Organs are three-dimensional structures made of different types of cells. The growth of organs requires supports that stimulate the three-dimensionally controlled colonization of these cell types. Future technical applications, such as micromachines, will require 3D particles that can control the self-assembly of three-dimensional structures. If an area can also be made to respond to a stimulus by swelling or shrinking, for example, it would be possible to produce movable miniature components for use in sensors, robotic arms, or switchable drug transporters.

Lahann and his co-workers have now developed a method that allows them to obtain three chemically different patches on the same microparticle. The technique they used is electrohydrodynamic co-jetting, a process in which the researchers pump three different polymer solutions through parallel capillaries. An electric field accelerates the ejected liquid, which stretches it out. The solvent simultaneously evaporates, leaving behind a microfiber consisting of three chemically different compartments. By cutting the fibers, the team produces fine microparticles that are also made of three chemically different segments.

For their starting materials, the researchers chose three biodegradable polymers based on lactic acid. The three polymers were each equipped with a different chemical anchor group (known as “click functionality”).

It was thus possible to attach different ligands, such as different biomolecules, to the anchor groups in an orthogonal fashion, meaning that the surface reactions to attach the ligands do not influence each other. By using biomolecules containing fluorescent markers, the scientists were able to demonstrate by using a microscope that three different patches were indeed present on the same microparticle. “For practical applications the particles need to be just a bit smaller – that is our next goal,” says Lahann.

About the Author
Dr. Lahann is Professor of Chemical Engineering, Materials Science and Engineering and Biomedical Engineering at the University of Michigan. He also serves as the Director of the Biointerfaces Institute at the University of Michigan and the Co-Director of the Institute for Functional Interfaces at the Karlrsruhe Institute of Technology, Germany. He has been selected byTechnology Review as one of the top 100 young innovators and is the recipient of the 2007 Nanoscale Science and Engineering Award as well as a NSF-CAREER award. Since 2011, he has been a fellow of the American Institute of Medical and Biological Engineering.
Author: Joerg Lahann, University of Michigan, Ann Arbor (USA), http://www.umich.edu/~lahannj/index.htm
Title: Chemically Orthogonal Three-Patch Microparticles
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201310727

Dr. Lahann | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>