Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micro-onions and Magnetic Ink

08.08.2011
Microfluidic systems for the easy production of multiphasic emulsion drops and multishelled polymer capsules

Under a microscope they look like miniature onions, in fact, they are new microcapsules introduced by David A. Weitz and Shin Hyun Kim in the journal Angewandte Chemie. The researchers from Harvard University in Cambridge (Massachusetts, USA) have developed a simple method that makes it possible to produce these tiny shell-like objects with a microfluidic system in just one step. Possible applications include magnetic inks and transport systems for multicomponent pharmaceuticals.

By using a sophisticated microfluidic system that consists of multiple glass capillaries with water-repellent and water-attracting coatings, the researchers are able to get opposing streams of immiscible liquids (oil and water) to collide. Tiny droplets are formed as the resulting stream passes through an opening into a collection capillary. Within the droplets, the phase boundaries between the liquids are cleverly disrupted so that—depending on the structure of the system—three- or four-layer emulsion drops are formed. This process is the first to make it possible to produce large numbers of multiwalled emulsion drops of uniform size and structure.

As a sample application, Weitz and Kim produced a “magnetic ink” for displays. The oily phase was a solution of a UV-crosslinking polymer. The researchers produced emulsion drops with a core of polymer solution surrounded by a shell of water, which is in turn contained in another shell of polymer solution. They mixed magnetic particles and black pigments into the polymer solution that makes up the core and added tiny particles of plastic to the aqueous liquid.

After irradiation with UV light, they obtained transparent capsules with a solid shell and a solid, black core that floats freely in the aqueous layer with the plastic particles. In the absence of a magnetic field, the black cores remain at the center of the capsules. A layer of such capsules in a display appears white because the plastic particles scatter light. When a magnetic field is applied, the cores are pulled toward the surface of the display, making the black color visible.

Another practical application for multilayer capsules is the transport of multicomponent pharmaceuticals that would remain separate until sequentially released on target in the body.

Author: Shin-Hyun Kim, Harvard University, http://weitzlab.seas.harvard.edu/
Title: One-Step Emulsification of Multiple Concentric Shells with Capillary Microfluidic Devices

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201102946

Shin-Hyun Kim | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://weitzlab.seas.harvard.edu/

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>