Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micro-onions and Magnetic Ink

08.08.2011
Microfluidic systems for the easy production of multiphasic emulsion drops and multishelled polymer capsules

Under a microscope they look like miniature onions, in fact, they are new microcapsules introduced by David A. Weitz and Shin Hyun Kim in the journal Angewandte Chemie. The researchers from Harvard University in Cambridge (Massachusetts, USA) have developed a simple method that makes it possible to produce these tiny shell-like objects with a microfluidic system in just one step. Possible applications include magnetic inks and transport systems for multicomponent pharmaceuticals.

By using a sophisticated microfluidic system that consists of multiple glass capillaries with water-repellent and water-attracting coatings, the researchers are able to get opposing streams of immiscible liquids (oil and water) to collide. Tiny droplets are formed as the resulting stream passes through an opening into a collection capillary. Within the droplets, the phase boundaries between the liquids are cleverly disrupted so that—depending on the structure of the system—three- or four-layer emulsion drops are formed. This process is the first to make it possible to produce large numbers of multiwalled emulsion drops of uniform size and structure.

As a sample application, Weitz and Kim produced a “magnetic ink” for displays. The oily phase was a solution of a UV-crosslinking polymer. The researchers produced emulsion drops with a core of polymer solution surrounded by a shell of water, which is in turn contained in another shell of polymer solution. They mixed magnetic particles and black pigments into the polymer solution that makes up the core and added tiny particles of plastic to the aqueous liquid.

After irradiation with UV light, they obtained transparent capsules with a solid shell and a solid, black core that floats freely in the aqueous layer with the plastic particles. In the absence of a magnetic field, the black cores remain at the center of the capsules. A layer of such capsules in a display appears white because the plastic particles scatter light. When a magnetic field is applied, the cores are pulled toward the surface of the display, making the black color visible.

Another practical application for multilayer capsules is the transport of multicomponent pharmaceuticals that would remain separate until sequentially released on target in the body.

Author: Shin-Hyun Kim, Harvard University, http://weitzlab.seas.harvard.edu/
Title: One-Step Emulsification of Multiple Concentric Shells with Capillary Microfluidic Devices

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201102946

Shin-Hyun Kim | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://weitzlab.seas.harvard.edu/

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Cells adapt ultra-rapidly to zero gravity

28.02.2017 | Health and Medicine

An Atom Trap for Water Dating

28.02.2017 | Earth Sciences

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>