Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice show innate ability to vocalize

27.03.2013
Deaf or not, courting male mice make same sounds
Scientists have long thought that mice might serve as a model for how humans learn to vocalize. But new research led by scientists at Washington State University-Vancouver has found that, unlike humans and songbirds, mice do not learn how to vocalize.

But the results, published in the current Journal of Neuroscience, point the way to a more finely focused, genetic tool for teasing out the mysteries of speech and its disorders.

To see if mice learn to vocalize, WSU neurophysiologist Christine Portfors took more than a dozen male mice and destroyed their ears' hair cells. The cells convert sound waves into the electrical signals processed by the brain, making hearing possible.

The deaf mice were then raised with hearing mice in a normal social environment.

Portfors and her fellow researchers, including WSU graduate student Elena Mahrt, used males because they are particularly exuberant vocalizers in the presence of females.

"We can elicit vocalization behavior in males really easily by just putting them with a female," Portfors said, "and they vocalize like crazy."

And it turned out that it didn't matter if the mouse was deaf or not. The researchers catalogued essentially the same suite of ultrasonic sounds from both the deaf and hearing mice.

"It means that they don't need to hear to be able to produce their sounds, their vocalizations," Portfors said. "…Basically, they don't need to hear themselves. They don't need auditory feedback. They don't need to learn."

The finding means mice are out as a model to study vocal learning. However, scientists can now focus on the mouse to learn the genetic mechanism behind communications disorders.

"If you don't have learning as a variable, you can look at the genetic control of these things," Portfors said. "You can look at the genetic control of the output of the signal. It's not messed up by an animal that's been in a particular learning situation."

Portfors and Mahrt did their research in collaboration with scientists at the University of Washington. The study was funded by the National Science Foundation and the National Institute for Deafness and Communications Disorders.

Christine Portfors | EurekAlert!
Further information:
http://www.wsu.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine

23.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>