Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mice with fluorescent replicating cells provide insights into cell proliferation in the human body

Cell proliferation is a key factor in degenerative diseases and cancers

A newly-engineered strain of mice whose dividing cells express a fluorescent protein could open the door to new methods of regulating cell proliferation in humans. Cell proliferation plays a key role in degenerative diseases, in which specific cells do not replicate enough, and in cancers, in which cells replicate too much.

Fluorescence microscopy section of the intestine. Green/yellow areas mark sites of cell proliferation. Cell nuclei marked in blue and nuclei with DNA replication marked in red.
(Photo: Agnes Klochendler)

Cells in the human body grow and multiply during body growth or during tissue regeneration after damage. However most mature tissues require only rare cell divisions. Scientists who wish to study these rare populations of replicating cells face a serious obstacle: most current methods for labeling and identifying replicating cells involve procedures that kill the cells and destroy sensitive biological material. This limits the ability of scientists to examine important functions of these cells, for example the genes active in such cells.

To address this problem, two Hebrew University of Jerusalem researchers — Prof. Yuval Dor from the Institute for Medical Research Israel-Canada (IMRIC) and Dr. Amir Eden from the Alexander Silberman Institute of Life Sciences — together with colleagues in Denmark and the U.S., created a mouse strain in which replicating cells express a fluorescent protein which is destroyed once cell division is completed. In all tissues of these mice, replicating cells are labeled by green fluorescence, which allows identification and isolation of live, replicating cells directly from healthy or diseased tissue.

Using this system, research associate Dr. Agnes Klochendler and PhD student Noa Weinberg-Corem at the Hebrew University were able to isolate a rare population of replicating cells from the livers of mice, and study the genes that they express compared with resting liver cells. Interestingly, they found that in replicating liver cells there is a significant decrease in the expression of genes responsible for key liver functions such as fatty acid and amino acid metabolism.

The research results indicate that when differentiated cells divide, they temporarily shift to a less differentiated state. This finding is important to our understanding of the difference between the two fundamental states of differentiation and proliferation in normal cells. It is also relevant for the situation in cancer, where cells are proliferating and often less differentiated.

In the future, the researchers hope to develop methods for regulating cell proliferation. For example, isolation and study of the rare replicating cells in the pancreas could lead to development of approaches to promote the proliferation and expansion of insulin-producing cells, whose loss is the hallmark of diabetes.

This could also be useful in other areas such as cancer and regenerative biology. By distinguishing between abnormally expressed genes in tumors and the genes associated with normal cell divisions, researchers may be able to identify cancer-specific replication markers with a potential to become new drug targets. Similarly, scientists could analyze the effects of specific drugs on the biology of replicating cells, providing important clues for regenerative medicine.

The study, A Transgenic Mouse Marking Live Replicating Cells Reveals In Vivo Transcriptional Program of Proliferation, was funded by the European Union and is published in the October issue of Developmental Cell.

For information, contact:

Dov Smith, Hebrew University Foreign Press Liaison
02-5881641 / 054-8820860 (+972-54-8820860)
Orit Sulitzeanu, Hebrew University Spokesperson
02-5882910 / 054-8820016

Orit Sulitzeanu | Hebrew University
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>