Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice with fluorescent replicating cells provide insights into cell proliferation in the human body

28.11.2012
Cell proliferation is a key factor in degenerative diseases and cancers

A newly-engineered strain of mice whose dividing cells express a fluorescent protein could open the door to new methods of regulating cell proliferation in humans. Cell proliferation plays a key role in degenerative diseases, in which specific cells do not replicate enough, and in cancers, in which cells replicate too much.


Fluorescence microscopy section of the intestine. Green/yellow areas mark sites of cell proliferation. Cell nuclei marked in blue and nuclei with DNA replication marked in red.
(Photo: Agnes Klochendler)

Cells in the human body grow and multiply during body growth or during tissue regeneration after damage. However most mature tissues require only rare cell divisions. Scientists who wish to study these rare populations of replicating cells face a serious obstacle: most current methods for labeling and identifying replicating cells involve procedures that kill the cells and destroy sensitive biological material. This limits the ability of scientists to examine important functions of these cells, for example the genes active in such cells.

To address this problem, two Hebrew University of Jerusalem researchers — Prof. Yuval Dor from the Institute for Medical Research Israel-Canada (IMRIC) and Dr. Amir Eden from the Alexander Silberman Institute of Life Sciences — together with colleagues in Denmark and the U.S., created a mouse strain in which replicating cells express a fluorescent protein which is destroyed once cell division is completed. In all tissues of these mice, replicating cells are labeled by green fluorescence, which allows identification and isolation of live, replicating cells directly from healthy or diseased tissue.

Using this system, research associate Dr. Agnes Klochendler and PhD student Noa Weinberg-Corem at the Hebrew University were able to isolate a rare population of replicating cells from the livers of mice, and study the genes that they express compared with resting liver cells. Interestingly, they found that in replicating liver cells there is a significant decrease in the expression of genes responsible for key liver functions such as fatty acid and amino acid metabolism.

The research results indicate that when differentiated cells divide, they temporarily shift to a less differentiated state. This finding is important to our understanding of the difference between the two fundamental states of differentiation and proliferation in normal cells. It is also relevant for the situation in cancer, where cells are proliferating and often less differentiated.

In the future, the researchers hope to develop methods for regulating cell proliferation. For example, isolation and study of the rare replicating cells in the pancreas could lead to development of approaches to promote the proliferation and expansion of insulin-producing cells, whose loss is the hallmark of diabetes.

This could also be useful in other areas such as cancer and regenerative biology. By distinguishing between abnormally expressed genes in tumors and the genes associated with normal cell divisions, researchers may be able to identify cancer-specific replication markers with a potential to become new drug targets. Similarly, scientists could analyze the effects of specific drugs on the biology of replicating cells, providing important clues for regenerative medicine.

The study, A Transgenic Mouse Marking Live Replicating Cells Reveals In Vivo Transcriptional Program of Proliferation, was funded by the European Union and is published in the October issue of Developmental Cell.

For information, contact:

Dov Smith, Hebrew University Foreign Press Liaison
02-5881641 / 054-8820860 (+972-54-8820860)
dovs@savion.huji.ac.il
Orit Sulitzeanu, Hebrew University Spokesperson
02-5882910 / 054-8820016
orits@savion.huji.ac.il

Orit Sulitzeanu | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>