Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice that 'smell' light could help us better understand olfaction

18.10.2010
Harvard University neurobiologists have created mice that can "smell" light, providing a potent new tool that could help researchers better understand the neural basis of olfaction.

The work, described this week in the journal Nature Neuroscience, has implications for the future study of smell and of complex perception systems that do not lend themselves to easy study with traditional methods.

"It makes intuitive sense to use odors to study smell," says Venkatesh N. Murthy, professor of molecular and cellular biology at Harvard. "However, odors are so chemically complex that it is extremely difficult to isolate the neural circuits underlying smell that way."

Murthy and his colleagues at Harvard and Cold Spring Harbor Laboratory used light instead, applying the infant field of optogenetics to the question of how cells in the brain differentiate between odors.

Optogenetic techniques integrate light-reactive proteins into systems that usually sense inputs other than light. Murthy and his colleagues integrated these proteins, called channelrhodopsins, into the olfactory systems of mice, creating animals in which smell pathways were activated not by odors, but rather by light.

"In order to tease apart how the brain perceives differences in odors, it seemed most reasonable to look at the patterns of activation in the brain," Murthy says. "But it is hard to trace these patterns using olfactory stimuli, since odors are very diverse and often quite subtle. So we asked: What if we make the nose act like a retina?"

With the optogenetically engineered animal, the scientists were able to characterize the patterns of activation in the olfactory bulb, the brain region that receives information directly from the nose. Because light input can easily be controlled, they were able to design a series of experiments stimulating specific sensory neurons in the nose and looking at the patterns of activation downstream in the olfactory bulb.

"The first question was how the processing is organized, and how similar inputs are processed by adjacent cells in the brain," Murthy says.

But it turns out that the spatial organization of olfactory information in the brain does not fully explain our ability to sense odors. The temporal organization of olfactory information sheds additional light on how we perceive odors. In addition to characterizing the spatial organization of the olfactory bulb, the new study shows how the timing of the "sniff" plays a large part in how odors are perceived.

The paper has implications not only for future study of the olfactory system, but more generally for teasing out the underlying neural circuits of other systems.

Murthy's co-authors on the Nature Neuroscience paper are Ashesh K. Dhawale of Cold Spring Harbor Laboratory and the National Centre for Biological Sciences in Bangalore, India, Akari Hagiwara of Harvard, Upinder S. Bhalla of the National Centre for Biological Sciences, and Dinu F. Albeanu of Cold Spring Harbor Laboratory. Their work was sponsored by Harvard and Cold Spring Harbor Laboratory.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>