Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MGH study identifies first molecular steps to childhood leukemia

17.07.2009
Chromosome reshuffle affecting blood stem cells leads to years-later cancer development

A Massachusetts General Hospital (MGH)-based research team has identified how a chromosomal abnormality known to be associated with acute lymphoblastic leukemia (ALL) – the most common cancer in children – initiates the disease process. In the July issue of Cell Stem Cell, they describe how expression of this mutation in hematopoietic stem cells (HSCs), which usually occurs before birth, leads to the development of leukemia many years later.

"Based on their longevity, it had been assumed but never shown that HSCs were the cells in which the first steps of leukemia occur. We now unequivocally demonstrate that HSCs can be involved in the early evolution of leukemia and that cells expressing an oncogene can continue contributing to blood formation while serving as a hard-to-detect reservoir of malignancy-prone cells," says Hanno Hock, MD, PhD, of the MGH Cancer Center and Center for Regenerative Medicine, corresponding author of the Cell Stem Cell article. "We hope that better understanding the latency period of childhood leukemia will help us interfere with the disease earlier and in a more targeted, less toxic manner."

Acute lymphoblastic leukemia (ALL) represents 23 percent of all cancer diagnoses in children under 15. Although treatment of childhood ALL has been a major success story, with 85 percent of patients surviving five years or more, it involves two to three years of complex chemotherapy. Studies have identified leukemia-associated genetic and molecular abnormalities that can precede development of symptoms by several years and also pointed to a chromosomal translocation called TEL-AML1 as the first step toward ALL. But how and in which cells this process begins was not clear.

Previous examinations of the role of the TEL-AML1 allele in initiating ALL, conducted using less refined systems, had inconsistent results. In the current study, the research team developed a mouse model in which they could induce the expression of TEL-AML1 at various stages of blood cell development using the same chromosomal regulatory elements active in leukemic cells. They found that, when the mutation is expressed in more differentiated progenitor cells, those cells do not survive long enough to acquire subsequent mutations required for malignant transformation. But expression of TEL-AML1 in HSCs, the only blood-forming cells that continually renew themselves, leads to a persistent overpopulation of altered HSCs that are particularly sensitive to secondary, transformational mutations.

"Basically, TEL-AML1 expands HSCs and puts them into a dormant but malignancy-prone state, setting the stage for the catastrophe to come," says Hock. "We are now looking at what happens when TEL-AML1 combines with other mutations occuring later in the development of this type of leukemia, to put together the complete biology of the disease. If we can generate a disease model that incorporates all the steps leading to full-blown leukemia, that should help us further study the biology of the disease and test new, targeted therapies." An assistant professor of Medicine at Harvard Medical School, Hock is also a member of the Harvard Stem Cell Institute.

Jeffrey Schindler of the MGH Cancer Center and Center for Regenerative Medicine is lead author of the Cell Stem Cell paper. Additional co-author are Denille Van Buren, Adlen Foudi, PhD, Ondrej Krejci, MD, PhD, and Jinshong Qin, PhD, MGH; and Stuart Orkin, MD, Children's Hospital and Dana-Farber Cancer Institute. The study was primarily supported by grants from the Ellison Foundation, the Laurie Strauss Leukemia Foundation, the Harvard Stem Cell Institute, and the National Institutes of Health.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>