Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MGH researchers develop faster method of engineering zinc-finger nucleases

13.12.2010
Less labor-intensive approach speeds creation of powerful DNA-targeting tool

A team led by Massachusetts General Hospital (MGH) researchers has developed a faster way to engineer synthetic enzymes that target specific DNA sequences for inactivation, repair or alteration. The report from the MGH Molecular Pathology Unit, being published online in Nature Methods, describes a highly effective but less labor-intensive way to generate powerful tools called zinc-finger nucleases (ZFNs).

"With our approach, called context-dependent assembly, any scientist can use either standard molecular biology techniques or commercial DNA synthesis to design ZFNs for their target gene of interest," says J. Keith Joung, MD, PhD, associate chief for Research in MGH Pathology, the study's senior author. "ZFNs are broadly applicable, powerful tools for manipulating the genomes of cells from various organisms – including humans – and may provide a way to efficiently correct gene mutations responsible for human disease, avoiding problems resulting from the imprecise nature of current gene therapy approaches using viral vectors."

Most human transcription factors that control whether a genetic signal is translated into a protein bind to specific DNA sequences using peptides called zinc fingers. Zinc-finger nucleases are synthetic "designer" proteins combining a zinc-finger domain, engineered to bind a particular DNA sequence, with an enzyme that breaks both DNA strands at the targeted site. While ZFNs have great potential, creating the customized proteins has been challenging.

In the simplest approach, called modular assembly, individual peptides are linked together like beads on a string to create a multi-finger protein theoretically able to recognize long DNA segments. Joung and others have shown that, in practice, modular assembly has a very low success rate for creating multi-finger proteins. This high failure rate is most likely due to "context-dependent" effects that individual zinc fingers can have on the DNA-binding activities of their neighboring fingers. Assembling peptides that don't work well together would be like trying to put together jigsaw puzzle pieces that don't fit.

In 2008, Joung and colleagues at the University of Minnesota and other institutions, members of the Zinc Finger Consortium, reported developing a method called OPEN (Oligomerized Pool ENgineering), which takes these context-dependent effects into account. But although OPEN works well, it can be labor intensive and extremely time consuming – requiring up to a year for a lab to establish the technology and two months of work to generate desired ZFNs. To address these limitations, the MGH research team has assembled an extensive archive of zinc fingers known to work well when positioned together – in essence puzzle pieces that already have been put together. Using this context-dependent method, the investigators were able to assemble dozens of ZFNs in as little as four days.

"With this archive in hand, any researcher can easily generate their own ZFNs in less than a week, and no special expertise is needed," Joung explains. "In addition to being much faster, context-dependent assembly can generate large numbers of ZFNs simultaneously, which is hard to do with OPEN because it is more labor intensive." As was the case with OPEN, the Joung lab and the Zinc Finger Consortium (http://www.zincfingers.org) will make the software and reagents required to practice context-dependent assembly available to all academic laboratories.

"One of the holy grails of genetics is the ability to make targeted changes to individual genes," says Laurie Tompkins, PhD, who over sees genetics grants at the National Institute of General Medical Sciences, one of the National Institutes of Health and a major supporter of this study. "Dr. Joung and his colleagues have developed an extraordinarily simple, efficient strategy for using zinc finger technology to swap out altered versions of genes for normal ones – or vice versa – providing basic scientists and clinicians alike with a broadly applicable research tool."

Adds Joung, an associate professor of Pathology at Harvard Medical School, "At this point, I believe that context-dependent assembly will have the biggest impact on researchers using ZFNs to genetically manipulate model organisms, possibly even models developed from pluripotent stem cells. Other big impacts should be enabling researchers to create knockout mutations in a large series of genes involved in a common pathway or related to a specific disease and to use ZFNs to create comprehensive collections of mutants for every gene in an organism." Joung is also a member of the MGH Center for Computational and Integrative Biology and Center for Cancer Research

The challenges posed to scientists interested in using ZFNs in their investigations were described in an article in the Fall 2010 issue of the MGH-sponsored magazine Proto, which can be accessed at http://protomag.com/assets/zinc-fingers-entry-fee.

Jeffry Sander, PhD, of the MGH Molecular Pathology Unit is lead author of the Nature Methods report. Additional co-authors are Elizabeth Dahlborg, Mathew Goodwin, Jessica Blackburn, Stacey Thibodeau-Beganny, Morgan Maeder, Cyd Khayter and David Langenau, MGH Molecular Pathology; Lindsay Cade, Randall Peterson and Jing-Ruey Yeh, MGH Cardiovascular Research Center; Feng Zhang, Shaun Curtin, Yiping Qi, Christopher Pierick, Robert Stupar and Daniel Voytas, University of Minnesota; Daniel Cifuentes, Ellen Hoffman and Antonio Giraldez, Yale University; and Deepak Reyon and Drena Dobbs, Iowa State University. Support for the study includes grants from the National Institutes of Health and the National Science Foundation.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu
http://protomag.com/assets/zinc-fingers-entry-fee

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>