Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MGH researchers develop faster method of engineering zinc-finger nucleases

13.12.2010
Less labor-intensive approach speeds creation of powerful DNA-targeting tool

A team led by Massachusetts General Hospital (MGH) researchers has developed a faster way to engineer synthetic enzymes that target specific DNA sequences for inactivation, repair or alteration. The report from the MGH Molecular Pathology Unit, being published online in Nature Methods, describes a highly effective but less labor-intensive way to generate powerful tools called zinc-finger nucleases (ZFNs).

"With our approach, called context-dependent assembly, any scientist can use either standard molecular biology techniques or commercial DNA synthesis to design ZFNs for their target gene of interest," says J. Keith Joung, MD, PhD, associate chief for Research in MGH Pathology, the study's senior author. "ZFNs are broadly applicable, powerful tools for manipulating the genomes of cells from various organisms – including humans – and may provide a way to efficiently correct gene mutations responsible for human disease, avoiding problems resulting from the imprecise nature of current gene therapy approaches using viral vectors."

Most human transcription factors that control whether a genetic signal is translated into a protein bind to specific DNA sequences using peptides called zinc fingers. Zinc-finger nucleases are synthetic "designer" proteins combining a zinc-finger domain, engineered to bind a particular DNA sequence, with an enzyme that breaks both DNA strands at the targeted site. While ZFNs have great potential, creating the customized proteins has been challenging.

In the simplest approach, called modular assembly, individual peptides are linked together like beads on a string to create a multi-finger protein theoretically able to recognize long DNA segments. Joung and others have shown that, in practice, modular assembly has a very low success rate for creating multi-finger proteins. This high failure rate is most likely due to "context-dependent" effects that individual zinc fingers can have on the DNA-binding activities of their neighboring fingers. Assembling peptides that don't work well together would be like trying to put together jigsaw puzzle pieces that don't fit.

In 2008, Joung and colleagues at the University of Minnesota and other institutions, members of the Zinc Finger Consortium, reported developing a method called OPEN (Oligomerized Pool ENgineering), which takes these context-dependent effects into account. But although OPEN works well, it can be labor intensive and extremely time consuming – requiring up to a year for a lab to establish the technology and two months of work to generate desired ZFNs. To address these limitations, the MGH research team has assembled an extensive archive of zinc fingers known to work well when positioned together – in essence puzzle pieces that already have been put together. Using this context-dependent method, the investigators were able to assemble dozens of ZFNs in as little as four days.

"With this archive in hand, any researcher can easily generate their own ZFNs in less than a week, and no special expertise is needed," Joung explains. "In addition to being much faster, context-dependent assembly can generate large numbers of ZFNs simultaneously, which is hard to do with OPEN because it is more labor intensive." As was the case with OPEN, the Joung lab and the Zinc Finger Consortium (http://www.zincfingers.org) will make the software and reagents required to practice context-dependent assembly available to all academic laboratories.

"One of the holy grails of genetics is the ability to make targeted changes to individual genes," says Laurie Tompkins, PhD, who over sees genetics grants at the National Institute of General Medical Sciences, one of the National Institutes of Health and a major supporter of this study. "Dr. Joung and his colleagues have developed an extraordinarily simple, efficient strategy for using zinc finger technology to swap out altered versions of genes for normal ones – or vice versa – providing basic scientists and clinicians alike with a broadly applicable research tool."

Adds Joung, an associate professor of Pathology at Harvard Medical School, "At this point, I believe that context-dependent assembly will have the biggest impact on researchers using ZFNs to genetically manipulate model organisms, possibly even models developed from pluripotent stem cells. Other big impacts should be enabling researchers to create knockout mutations in a large series of genes involved in a common pathway or related to a specific disease and to use ZFNs to create comprehensive collections of mutants for every gene in an organism." Joung is also a member of the MGH Center for Computational and Integrative Biology and Center for Cancer Research

The challenges posed to scientists interested in using ZFNs in their investigations were described in an article in the Fall 2010 issue of the MGH-sponsored magazine Proto, which can be accessed at http://protomag.com/assets/zinc-fingers-entry-fee.

Jeffry Sander, PhD, of the MGH Molecular Pathology Unit is lead author of the Nature Methods report. Additional co-authors are Elizabeth Dahlborg, Mathew Goodwin, Jessica Blackburn, Stacey Thibodeau-Beganny, Morgan Maeder, Cyd Khayter and David Langenau, MGH Molecular Pathology; Lindsay Cade, Randall Peterson and Jing-Ruey Yeh, MGH Cardiovascular Research Center; Feng Zhang, Shaun Curtin, Yiping Qi, Christopher Pierick, Robert Stupar and Daniel Voytas, University of Minnesota; Daniel Cifuentes, Ellen Hoffman and Antonio Giraldez, Yale University; and Deepak Reyon and Drena Dobbs, Iowa State University. Support for the study includes grants from the National Institutes of Health and the National Science Foundation.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu
http://protomag.com/assets/zinc-fingers-entry-fee

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>