Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Methods to Visualize Bacterial Cell-to-Cell Communication

18.07.2013
Researchers at the University of Basel have developed a live-cell fluorescent labeling that makes bacterial cell-to-cell communication pathways visible.

The communication between bacterial cells is essential in the regulation of processes within bacterial populations, such as biofilm development. The results have been published in the journal «Chemistry – A European Journal».

Most bacteria are able to communicate with each other by secreting signaling molecules. Once the concentration of signals has reached a critical density («the Quorum), the bacteria are able to coordinate their behavior. Only when this critical population density has been reached certain genes are activated that lead to, for example, the formation of biofilms or the expression of virulence factors. Bacteria utilize this so-called «Quorum Sensing» (QS) to synchronize their behavior to regulate functions that benefit the entire population.

The most commonly used signaling molecules are N-Acyl-L-homoserine lactones (AHLs) that are secreted by the bacteria into their surroundings, where they can easily be incorporated by other cells. The AHLs then start binding to specific QS-receptors once a certain density has been reached inside the cell.

Fluorescent labeling of signaling compound to visualize receptors

The research groups under the leadership of Prof. Karl Gademann (University of Basel) and Prof. Leo Eberl (University of Zurich) have succeeded in visualizing live cell-to-cell communication pathways. The scientists added fluorescents tags to natural AHL signaling molecules and were able to show through tests with bacterial cultures that the modified signaling molecule selectively binds to the Burkholderia cenocepacia QS receptor.

B. cenocepacia is a member of a bacterial group known to form biofilms in the lungs of immunocompromised persons or patients suffering from cystic fibrosis, causing severe complications such as pneumonia.

The scientists were also able to detect the receptor in a native population of B. cenocepacia. Here, the natural AHL signaling molecule is competing with its artificial analogue for the binding to the receptor. The fluorescent-labeling agent was equally distributed over the live cell, which made it possible to localize the receptor inside the cytoplasm for the first time.

Broad application possibilities

Using fluorescently labeled AHL analogues represent an operationally simple tool for the imaging of QS receptors in live cells. Thus, this new method could be used for a broad range of applications, such as the fast analysis of QS in various environmental and clinical samples. Furthermore, it might lead to a better understanding of the communication between bacteria and host as well as of the cell-to-cell communication in bacteria populations.

Original Citation
José Gomes, Natalie Huber, Alexander Grunau, Leo Eberl, Karl Gademann
Fluorescent Labeling Agents for Quorum-Sensing Receptors (FLAQS) in Live Cells
Chem. Eur. J. 2013, 19, published online 13 Jun 2013 | doi: 10.1002/chem.201301387
Further Information
Prof. Karl Gademann, University of Basel, Departement of Chemistry, Tel. +41 61 267 11 44, E-mail: Karl.Gademann@unibas.ch
Weitere Informationen:
http://dx.doi.org/10.1002/chem.201301387 - Abstract

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>