Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Methods to Trace Fragrance Allergens

24.10.2013
A recent doctoral thesis from the University of Gothenburg presents new methods to trace allergenic fragrance compounds in consumer products, such as perfumes.

Since cosmetics and hygiene products generally are exposed to air when used, it is important to use air-exposed fragrance compounds when testing a patient for allergic reactions, and not only the pure fragrance compounds.

‘I have developed methods for chemical analysis that for the first time make it possible to identify fragrance compounds that have been exposed to air and thus become potent allergens in small amounts and that people may come in contact with in consumer products,’ says Johanna Rudbäck at the Department of Chemistry and Molecular Biology, University of Gothenburg.

Fragrance compounds are among the most allergenic substances in our environment and are almost always used in cosmetics and hygiene products.

Rudbäck studied two essential oils containing some of the most common fragrance compounds, sweet orange oil and petitgrain oil. The researchers have previously shown that exposing some common fragrance compounds to air leads to the formation of potent allergens, hydroperoxides in particular.

‘My analyses show that hydroperoxides from the fragrance compounds were present already before the bottles were opened, and the levels increased when the oils were exposed to air. The study shows that the oils didn’t have any natural protection against the formation of allergenic compounds,’ says Rudbäck.

To learn more about what happens when exposing fragrance compounds to air, Rudbäck studied two additional commonly used fragrance compounds, alpha-terpinene and citronellol. Alpha-Terpinene is found in for example tea tree oil and citronellol, from geranium, is one of the six most common fragrance compounds in cosmetics and hygiene products.

‘The allergenic effect of both compounds increased tenfold after air exposure compared to the pure fragrance compounds,’ says Rudbäck.

The hydroperoxides from the fragrance compounds are generally difficult to identify and quantify. They are unstable and lack UV absorbance, and are very similar and come in several different forms. In addition, they are found in low concentrations in complex mixtures. The new methods involve separation of the hydroperoxides using either liquid or gas chromatography and detection using mass spectrometry.

‘According to EU regulations, cosmetics must be specially labelled when containing fragrance allergens in concentrations exceeding 0.001% in stay-on products such as lotions and 0.01% in rinse-off products such as shampoos,’ says Rudbäck.

Title of the doctoral thesis: Allergenic Oxidation Products from Fragrance Terpenes – Chemical Analysis and Determination of Sensitizing Potency

Contact: Johanna Rudbäck, Department of Chemistry and Molecular Biology
e-mail: johanna.rudback@chem.gu.se
Weitere Informationen:
Link to the thesis: http://hdl.handle.net/2077/32865

Torsten Arpi | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>