Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Methods Allow for Insights into Molecular Mechanisms of Regeneration

05.07.2011
Researchers of the Berlin Institute for Medical Systems Biology (BIMSB) at the Max Delbrück Center (MDC) have gained new insights into planarian flatworms, which are an attractive model for stem cell biology and regeneration.

Close collaboration between four laboratories at the BIMSB led by Stefan Kempa, Christoph Dieterich, Nikolaus Rajewsky and Wei Chen has led to the identification of thousands of gene products, many of which are expressed and are important in stem cell function. This was achieved by precise characterization of all RNA-molecules expressed in the animals’ cells, the so-called transcriptome, without using the genome sequence (Genome Research, July 2011 21: 1193-1200)*.

Planarians are famous for their almost unlimited ability to regenerate any tissue via pluripotent adult stem cells. Their spectacular regenerative capabilities have been studied for more than 100 years. With the development of new molecular and genetics approaches, planarians have recently re-emerged as a model system for the study of regeneration and stem cells.

The scientists at the BIMSB combined two existing and complementary sequencing methods to decipher the transcriptome of the planarian Schmidtea mediterranea without depending on genome sequences. Their approach is of great practical importance since the genomes of many organisms are known to be extremely difficult to assemble, even with the current sequencing technologies.

Furthermore, they also were able to identify several novel gene products (mRNAs) of which they proved that they are specifically expressed in the stem cells. It is the first proteomics study of such scale in this phylum (Platyhelminthes), as Wei Chen pointed out. The catalogue of transcripts assembled in their study, together with the identified peptides, dramatically expands and refines planarian research.

The Berlin Institute for Medical Systems Biology (BIMSB) was launched by the MDC in 2008, supported by start-up funding from the Federal Ministry of Education and Research (BMBF) and the Senate of Berlin. Medical Systems Biology focuses on molecular networks of genes and proteins, their regulation and interaction with each other and their relevance in disease processes. BIMSB works closely with research institutions and networks in Berlin and beyond, in particular with Humboldt University and Charité – Universitätsmedizin Berlin and also with New York University, USA.

*De novo assembly and validation of Planaria transcriptome by massive parallel sequencing and shotgun proteomics
Catherine Adamidi1*, Yongbo Wang1*, Dominic Gruen1*, Guido Mastrobuoni1*, Xintian You1*, Dominic Tolle1, Matthias Dodt1, Sebastian Mackowiak1, Andreas Gogol-Doering1, Pinar Oenal1, Agnieszka Rybak1, Eric Ross2, Alejandro Sánchez Alvarado2, Stefan Kempa1+, Christoph Dieterich1+, Nikolaus Rajewsky1+, Wei Chen1+
1Max-Delbrück-Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Robert Rössle Straße 10, Berlin 13125, Germany
2Department of Neurobiology and Anatomy, Howard Hughes Medical Institute, University
of Utah, Salt Lake City, UT 84132, USA
* equal contribution
+ corresponding authors SK, CD, NR and WC
Published in Advance May 2, 2011, doi:10.1101/gr.113779.110
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10, 13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>