Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method will triple amount of genetic information from newborn blood spot screenings

13.01.2011
Archived blood could be used to study population health patterns and diseases present at birth

Van Andel Research Institute (VARI) researchers have developed a method that can yield more information from archived newborn blood that has implications for a vast array of research, including population health studies and answering questions about diseases in infants and children.

In a recent study published in Pathology International, VARI researchers detected approximately 9,000 activated genes in samples from adult blood spots on Guthrie cards that had been archived anywhere from six months to three years. Researchers say their modified method uses commercially available tools and can be easily adopted by others in the scientific community for use on newborn blood spots.

"Genetic information from Guthrie cards is a valuable resource," said VARI Distinguished Scientific Investigator Jim Resau, Ph.D. "It opens doors to examine risk factors and potentially diagnose diseases before the clinical features are present. One such disease might be Cerebral Palsy, which currently can't be diagnosed until a child is nearly two. The information could also be used to study pediatric cancers such as neuroblastoma, which is known to be present at birth in many cases."

Guthrie cards have been used for the past 20-30 years to collect blood for mandatory newborn screening programs in the United States, Australia, New Zealand, Japan, and most countries in Europe and South America. Blood is usually collected through a heel prick 24 to 48 hours after birth and is placed on the cards, which may be archived after screening. Although genetic material in blood from Guthrie cards has been presumed to be degraded because of varying storage conditions, VARI researchers were able to detect more than 3,000 activated genes in each sample in a 2009 study, and recently, they were able to detect three times that amount using the new method.

"We were looking for the best possible way to extract the most information from blood on Guthrie cards using the least amount of this precious resource," said Resau.

"Showing that mRNA is reasonably well preserved in archived filter paper blood spots, whether frozen or not, opens up a very important avenue for clinical and translational research, especially in child health, because the largest such archive is samples used for newborn genetic screening," said Nigel Paneth, M.D., M.P.H., University Distinguished Professor in the Departments of Epidemiology and Pediatrics & Human Development at the Michigan State University College of Human Medicine.

Messenger ribonucleic acid or mRNA is a molecule that carries instructions from DNA to protein making structures in cells.

Since archived blood spots can be more than 20 years old, the researchers' next step is to investigate the power of activated gene detection in various archival periods. Resau said the cards could also be used for population studies, such as finding out when a particular virus first appeared in a specific region, or levels of compounds in that region that could be affecting public health.

The researchers gratefully acknowledge support of this work by the National Institute of Neurological Disorders and Stroke (R01NS055101) via Michigan State University. The contents of the study are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health or NINDS.

About Van Andel Institute

Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories and in collaborative partnerships that span the globe. VARI is affiliated with the Translational Genomics Research Institute, (TGen), of Phoenix, Arizona.

Joe Gavan | EurekAlert!
Further information:
http://www.vai.org

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>