Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New method for studying molecule reactions a breakthrough in organic chemistry

UCLA nanotech research mimics enzymes in directing chemical reactions

Good chemists are passive-aggressive — they manipulate molecules without actually touching them.

In a feat of manipulating substances at the nanoscale, UCLA researchers and colleagues demonstrated a method for isolating two molecules together on a substrate and controlling how those two molecules react when excited with ultraviolet light, making detailed observations both before and after the reaction.

Their research is published today in the journal Science.

"This is one step in measuring and understanding the interactions between light and molecules, which we hope will eventually lead to more efficient conversion of sunlight to electrical and other usable forms of energy," said lead study author Paul S. Weiss, a distinguished professor of chemistry and biochemistry who holds UCLA's Fred Kavli Chair in Nanosystems Sciences. "Here, we used the energy from the light to induce a chemical reaction in a way that would not happen for molecules free to move in solution; they were held in place by their attachment to a surface and by the unreactive matrix of molecules around them."

Weiss is also director of UCLA's California NanoSystems Institute (CNSI) and a professor of materials science and engineering at the UCLA Henry Samueli School of Engineering and Applied Science.

Controlling exactly how molecules combine in order to study the resulting reactions is called regioselectivity. It is important because there are a variety of ways that molecules can combine, with varying chemical products. One way to direct a reaction is to isolate molecules and to hold them together to get regioselective reactions; this is the strategy used by enzymes in many biochemical reactions.

"The specialized scanning tunneling microscope used for these studies can also measure the absorption of light and charge separation in molecules designed for solar cells," Weiss said. "This gives us a new way to optimize these molecules, in collaboration with synthetic chemists. This is what first brought us together with our collaborators at the University of Washington, led by Prof. Alex Jen."

Alex K-Y. Jen holds the Boeing-Johnson Chair at the University of Washington, where he is a professor of materials science and engineering and of chemistry. The theoretical aspects of the study were led by Kendall Houk, a UCLA professor of chemistry and biochemistry who holds the Saul Winstein Chair in Organic Chemistry. Houk is a CNSI researcher.

The study's first author, Moonhee Kim, a graduate student in Weiss' lab, managed to isolate and control the reactions of pairs of molecules by creating nanostructures tailored to allow only two molecules fit in place. The molecules used in the study are photosensitive and are used in organic solar cells; similar techniques could be used to study a wide variety of molecules. Manipulating the way molecules in organic solar cells come together may also ultimately lead to greater efficiency.

To isolate the two molecules and align them in the desired — but unnatural — way, Kim utilized a concept similar to that of toddler's toys that feature cutouts in which only certain shapes will fit.

She created a defect, or cutout, in a self-assembled monolayer, or SAM, a single layer of molecules on a flat surface — in this case, gold. The defect in the SAM was sized so that only two organic reactant molecules would fit and would only attach with the desired alignment. As a guide to attach the molecules to the SAM in the correct orientation, sulfur was attached to the bottoms of the molecules, as sulfur binds readily to gold.

"The standard procedure for this type of chemistry is to combine a bunch of molecules in solution and let them react together, but through random combinations, only 3 percent of molecules might react in this way," UCLA's Houk said. "Our method is much more targeted. Instead of doing one measurement on thousands of molecules, we are doing a range of measurements on just two molecules."

After the molecules were isolated and trapped on the substrate, they still needed to be excited with light to react. In this case, the energy was supplied by ultraviolet light, which triggered the reaction. The researchers were able to verify the proper alignment and the reaction of the molecules using the special microscope developed by Kim and Weiss.

The work was funded by the U.S. Department of Energy, the National Science Foundation, the Air Force Office of Scientific Research and the Kavli Foundation.

The California NanoSystems Institute at UCLA is an integrated research facility located at UCLA and UC Santa Barbara. Its mission is to foster interdisciplinary collaborations in nanoscience and nanotechnology; to train a new generation of scientists, educators and technology leaders; to generate partnerships with industry; and to contribute to the economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California. An additional $850 million of support has come from federal research grants and industry funding. CNSI members are drawn from UCLA's College of Letters and Science, the David Geffen School of Medicine, the School of Dentistry, the School of Public Health and the Henry Samueli School of Engineering and Applied Science. They are engaged in measuring, modifying and manipulating atoms and molecules — the building blocks of our world. Their work is carried out in an integrated laboratory environment. This dynamic research setting has enhanced understanding of phenomena at the nanoscale and promises to produce important discoveries in health, energy, the environment and information technology.

Mike Rodewald | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>