Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for studying molecule reactions a breakthrough in organic chemistry

11.03.2011
UCLA nanotech research mimics enzymes in directing chemical reactions

Good chemists are passive-aggressive — they manipulate molecules without actually touching them.

In a feat of manipulating substances at the nanoscale, UCLA researchers and colleagues demonstrated a method for isolating two molecules together on a substrate and controlling how those two molecules react when excited with ultraviolet light, making detailed observations both before and after the reaction.

Their research is published today in the journal Science.

"This is one step in measuring and understanding the interactions between light and molecules, which we hope will eventually lead to more efficient conversion of sunlight to electrical and other usable forms of energy," said lead study author Paul S. Weiss, a distinguished professor of chemistry and biochemistry who holds UCLA's Fred Kavli Chair in Nanosystems Sciences. "Here, we used the energy from the light to induce a chemical reaction in a way that would not happen for molecules free to move in solution; they were held in place by their attachment to a surface and by the unreactive matrix of molecules around them."

Weiss is also director of UCLA's California NanoSystems Institute (CNSI) and a professor of materials science and engineering at the UCLA Henry Samueli School of Engineering and Applied Science.

Controlling exactly how molecules combine in order to study the resulting reactions is called regioselectivity. It is important because there are a variety of ways that molecules can combine, with varying chemical products. One way to direct a reaction is to isolate molecules and to hold them together to get regioselective reactions; this is the strategy used by enzymes in many biochemical reactions.

"The specialized scanning tunneling microscope used for these studies can also measure the absorption of light and charge separation in molecules designed for solar cells," Weiss said. "This gives us a new way to optimize these molecules, in collaboration with synthetic chemists. This is what first brought us together with our collaborators at the University of Washington, led by Prof. Alex Jen."

Alex K-Y. Jen holds the Boeing-Johnson Chair at the University of Washington, where he is a professor of materials science and engineering and of chemistry. The theoretical aspects of the study were led by Kendall Houk, a UCLA professor of chemistry and biochemistry who holds the Saul Winstein Chair in Organic Chemistry. Houk is a CNSI researcher.

The study's first author, Moonhee Kim, a graduate student in Weiss' lab, managed to isolate and control the reactions of pairs of molecules by creating nanostructures tailored to allow only two molecules fit in place. The molecules used in the study are photosensitive and are used in organic solar cells; similar techniques could be used to study a wide variety of molecules. Manipulating the way molecules in organic solar cells come together may also ultimately lead to greater efficiency.

To isolate the two molecules and align them in the desired — but unnatural — way, Kim utilized a concept similar to that of toddler's toys that feature cutouts in which only certain shapes will fit.

She created a defect, or cutout, in a self-assembled monolayer, or SAM, a single layer of molecules on a flat surface — in this case, gold. The defect in the SAM was sized so that only two organic reactant molecules would fit and would only attach with the desired alignment. As a guide to attach the molecules to the SAM in the correct orientation, sulfur was attached to the bottoms of the molecules, as sulfur binds readily to gold.

"The standard procedure for this type of chemistry is to combine a bunch of molecules in solution and let them react together, but through random combinations, only 3 percent of molecules might react in this way," UCLA's Houk said. "Our method is much more targeted. Instead of doing one measurement on thousands of molecules, we are doing a range of measurements on just two molecules."

After the molecules were isolated and trapped on the substrate, they still needed to be excited with light to react. In this case, the energy was supplied by ultraviolet light, which triggered the reaction. The researchers were able to verify the proper alignment and the reaction of the molecules using the special microscope developed by Kim and Weiss.

The work was funded by the U.S. Department of Energy, the National Science Foundation, the Air Force Office of Scientific Research and the Kavli Foundation.

The California NanoSystems Institute at UCLA is an integrated research facility located at UCLA and UC Santa Barbara. Its mission is to foster interdisciplinary collaborations in nanoscience and nanotechnology; to train a new generation of scientists, educators and technology leaders; to generate partnerships with industry; and to contribute to the economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California. An additional $850 million of support has come from federal research grants and industry funding. CNSI members are drawn from UCLA's College of Letters and Science, the David Geffen School of Medicine, the School of Dentistry, the School of Public Health and the Henry Samueli School of Engineering and Applied Science. They are engaged in measuring, modifying and manipulating atoms and molecules — the building blocks of our world. Their work is carried out in an integrated laboratory environment. This dynamic research setting has enhanced understanding of phenomena at the nanoscale and promises to produce important discoveries in health, energy, the environment and information technology.

Mike Rodewald | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>