Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method Provides Panoramic View of Protein-RNA Interactions in Living Cells

03.11.2008
Scientists have developed a genome-wide platform to study how specialized proteins regulate RNA in living, intact cells. The result is an unbiased and unprecedented look at how differences in RNA can explain how a worm and a human can each have 25,000 genes yet be so different.

DNA, it has turned out, isn't all it was cracked up to be. In recent years we learned that the molecule of life, the discovery of the 20th century, did not -- could not -- by itself explain the huge differences in complexity between a human and a worm.

Forced to look elsewhere, scientists turned to RNA, a direct yet more complex transcript of DNA. But methodological problems have historically plagued the study of RNA regulation in living cells, limiting not only the accuracy of results but also our understanding of RNA's role in human disease.

But now, in research to appear in the November 2 advance online issue of Nature, Robert B. Darnell, head of the Laboratory of Molecular Neuro-oncology at Rockefeller University and a Howard Hughes Medical Institute investigator, and his team have changed all that.

By adapting techniques mastered in the test tube and combining them with high throughput technology, the team has developed a genome-wide platform to study how specialized proteins regulate RNA in living, intact cells. The platform allows researchers to identify, in a single experiment, every sequence within every strand of RNA to which proteins bind. The result is an unbiased and unprecedented look at how differences in RNA can explain how a worm and a human can each have 25,000 genes yet be so different.

"RNA offers a way to make the cell much more complex than what this limited set of genes can offer," says Darnell, who is Robert and Harriet Heilbrunn Professor at Rockefeller. "But how is RNA being regulated in different conditions and diseases, and in different cell types? With this platform, we now have a way to address all these questions."

Traditional methods used molecules to extract protein-RNA complexes from living tissue. But often the molecule only extracted the RNA. Other times, the protein bound too weakly to survive the purification process, which involved stripping the complex of unwanted debris. To address the issue, Darnell and his team used a trick from test-tube biochemistry that molecularly cements these regulatory proteins to RNA at the moment they touch. The technique, when applied to high throughput sequencing, is called high throughput sequencing-cross linking immunoprecipitation, or HITS-CLIP for short.

Since the RNA and RNA-binding protein are fused together, the researchers can really beat up the extract and rigorously purify the protein without fear of losing the RNA. At the end of the day, they are left with the RNA sequence to which the protein was bound. They can then take these sequences to Rockefeller's high throughput sequence facility, and with the help of Research Support Specialist Scott Dewell, overlay them onto the genome and see where they match. What they get is a map of every position on every transcribed RNA where the RNA binding protein is binding.

When DNA is transcribed into RNA, the primary transcript is divided into many blocks called exons, which are separated by empty spaces. In order to convert the transcript into some sort of message, all the spaces need to be removed; but if an exon is dropped, a different version of that protein, which could carry a very different message, is created. "That's RNA splicing," says first author Donny Licatalosi, a postdoctoral associate in the lab. "It is what gives rise to this massive pool of diverse and complex tissues with a relatively small number of genes."

In the past, the group used a sophisticated process of evidence and inference to make predictions of the points of regulation along the transcript. "Now, we have direct biochemical validation that these interactions occur in the brain to regulate splicing," says Licatalosi.

And as it turns out, "The observed map -- and this was amazing -- looked just like our predicted map," says Darnell.

Darnell, Licatalosi and their colleagues Aldo Mele, a research assistant, John Fak, a research assistant, Sung-Wook Chi, a graduate fellow in computational biology and medicine, Xuning Wang, assistant director of biocomputing and Jennifer Darnell, a research associate professor, looked at an RNA-binding protein called Nova2 that is found exclusively in neurons. They found that depending on where Nova2 binds to RNA, they could predict and directly observe whether an exon would be included or excluded in the final transcript, and which protein version it created. "The cell seems to be going through great trouble to regulate these RNAs in different conditions and different cell types," says Darnell. "When RNA developed the ability to make a more stable copy of itself -- DNA -- it didn't write itself off as a relic for the textbooks. It stayed at the core of complex processes in the cell."

This research was supported in part by the National Institutes of Health.

Thania Benios | Newswise Science News
Further information:
http://www.rockefeller.edu

Further reports about: Cells DNA Living Lakes-Konferenz Nova2 Protein-RNA RNA RNA-binding Throughput cell types regulate transcript

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>