Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for making tiny catalysts holds promise for air quality

16.12.2010
Fortified with iron: It’s not just for breakfast cereal anymore. University of Illinois researchers have demonstrated a simpler method of adding iron to tiny carbon spheres to create catalytic materials that have the potential to remove contaminants from gas or liquid.

Civil and environmental engineering professor Mark Rood, graduate student John Atkinson and their team described their technique in the journal Carbon.

Carbon structures can be a support base for catalysts, such as iron and other metals. Iron is a readily available, low-cost catalyst with possible catalytic applications for fuel cells and environmental applications for adsorbing harmful chemicals, such as arsenic or carbon monoxide. Researchers produce a carbon matrix that has many pores or tunnels, like a sponge. The large surface area created by the pores provides sites to disperse tiny iron particles throughout the matrix.

A common source of carbon is coal. Typically, scientists modify coal-based materials into highly porous activated carbon and then add a catalyst. The multi-step process takes time and enormous amounts of energy. In addition, materials made with coal are plagued by ash, which can contain traces of other metals that interfere with the reactivity of the carbon-based catalyst.

The Illinois team’s ash-free, inexpensive process takes its carbon from sugar rather than coal.

In one continuous process, it produces tiny, micrometer-sized spheres of porous, spongy carbon embedded with iron nanoparticles – all in the span of a few seconds.

“That’s what really sets this apart from other techniques. Some people have carbonized and impregnated with iron, but they have no surface area. Other people have surface area but weren’t able to load it with iron,” Atkinson said. “Our technique provides both the carbon surface and the iron nanoparticles.”

The researchers built upon a technique called ultrasonic spray pyrolysis (USP), developed in U. of I. chemistry professor Kenneth Suslick’s lab in 2005. Suslick used a household humidifier to make fine mist from a carbon-rich solution, then directed the mist through an extremely hot furnace, which evaporated the water from each droplet and left tiny, highly porous carbon spheres.

Atkinson used USP to make his carbon spheres, but added an iron-containing salt to a carbon-rich sugar solution. When the mist is piped into the furnace, the heat stimulates a chemical reaction between the solution ingredients that creates carbon spheres with iron particles dispersed throughout.

“We were able to take advantage of Dr. Suslick’s USP technique, and we are building upon it by simultaneously impregnating the porous carbons with metal nanoparticles,” Atkinson said. “It’s simple because it’s continuous. We can isolate the carbon, add pores, and impregnate iron into the carbon spheres in a single step.”

Another advantage of the USP technique is the ability to create materials to address particular needs. By fabricating the material from scratch, rather than trying to modify off-the-shelf products, scientists and engineers can develop materials for specific problem-solving scenarios.

“Right now, you take coal out of the ground and modify it. It’s difficult to tailor it to solve a particular air quality problem,” Rood said. “We can readily change this new material by how it’s activated to tailor its surface area and the amount of impregnated iron. This method is simple, flexible and tailorable.”

Next, the researchers will explore applications for the material. Rood and Atkinson have received two grants from the National Science Foundation to develop the carbon-iron spheres to remove nitric oxide, mercury, and dioxin from gas streams – bioaccumulating pollutants that have caused concern as emissions from combustion sources.

Currently, the three pollutants can be dealt with separately by carbon-based adsorbents and catalysts, but the Illinois team and collaborators in Taiwan hope to harness carbon’s adsorption properties and iron’s reactivity to remove all three pollutants from gas streams simultaneously.

“We’re looking at taking advantage of their porosity and, ideally, their catalytic applications as well,” Atkinson said. “Carbon is a very versatile material. What’s in my mind is a multi-pollutant control where you can use the porosity and the catalyst to tackle two problems at once.”

EPRI, the National Science Foundation, the U.S. Department of Energy, the Air and Waste Management Association, and the University of Illinois supported this work. Co-authors included Suslick, graduate student Maria Fortunato, and researchers from the Illinois State Geological Survey.

Liz Ahlberg | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>