Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method makes it easier to separate useful stem cells from 'problem' ones for therapies

23.04.2013
UCLA study IDs small molecule that destroys potentially dangerous cells

Pluripotent stem cells can turn, or differentiate, into any cell type in the body, such as nerve, muscle or bone, but inevitably some of these stem cells fail to differentiate and end up mixed in with their newly differentiated daughter cells.

Because these remaining pluripotent stem cells can subsequently develop into unintended cell types — bone cells among blood, for instance — or form tumors known as teratomas, identifying and separating them from their differentiated progeny is of utmost importance in keeping stem cell–based therapeutics safe.

Now, UCLA scientists have discovered a new agent that may be useful in strategies to remove these cells. Their research was published online April 15 in the journal Developmental Cell and will appear in an upcoming print edition of the journal.

The study was led by Carla Koehler, a professor of chemistry and biochemistry at UCLA, and Dr. Michael Teitell, a UCLA professor of pathology and pediatrics. Both are members of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at UCLA and UCLA's Jonsson Comprehensive Cancer Center.

In work using the single-celled microorganism known as baker's yeast, or Saccharomyces cerevisiae, as a model system, Koehler, Teitell and their colleagues had discovered a molecule called MitoBloCK-6, which inhibits the assembly of cells' mitochondria — the energy-producing "power plants" that drive most cell functions. The research team then tested the molecule in a more complex model organism, the zebrafish, and demonstrated that MitoBloCK-6 blocked cardiac development.

However, when the scientists introduced MitoBloCK-6 to differentiated cell lines, which are typically cultured in the lab, they found that the molecule had no effect at all. UCLA postdoctoral fellow Deepa Dabir tested the compound on many differentiated lines, but the results were always the same: The cells remained healthy.

"I was puzzled by this result, because we thought this pathway was essential for all cells, regardless of differentiation state," Koehler said.

The team then decided to test MitoBloCK-6 on human pluripotent stem cells. Postdoctoral fellow Kiyoko Setoguchi showed that MitoBloCK-6 caused the pluripotent stem cells to die by triggering apoptosis, a process of programmed cell suicide.

Because the tissue-specific daughter cells became resistant to death shortly after their differentiation, the destruction of the pluripotent stem cells left a population of only the differentiated cells. Why this happens is still unclear, but the researchers said that this ability to separate the two cell populations could potentially reduce the risk of teratomas and other problems in regenerative medicine treatment strategies.

"We discovered that pluripotent stem cell mitochondria undergo a change during differentiation into tissue-specific daughter cells, which could be the key to the survival of the differentiated cells when the samples are exposed to MitoBloCK-6," Teitell said. "We are still investigating this process in mitochondria, but we now know that mitochondria have an important role in controlling pluripotent stem cell survival."

MitoBloCK-6 is what is known as a "small molecule," which can easily cross cell membranes to reach mitochondria. This quality makes MitoBloCK-6 — or a derivative compound with similar properties — ideal for potential use as a drug, because it can function in many cell types and species and can alter the function of mitochondria in the body for therapeutic effects.

"It is exciting that our research in the one-cell model baker's yeast yielded an agent for investigating and controlling mitochondrial function in human pluripotent stem cells," Koehler said. "This illustrates that mitochondrial function is highly conserved across organisms and confirms that focused studies in model systems provide insight into human stem-cell biology. When we started these experiments, we did not predict that we would be investigating and controlling mitochondrial function in pluripotent stem cells."

The research was supported by the California Institute for Regenerative Medicine, the National Institutes of Health, the United Mitochondrial Disease Foundation, and the Development and Promotion of Science and Technology Talents Project of the Royal Thai Government.

The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research: UCLA's stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Broad Stem Cell Research Center is committed to a multidisciplinary, integrated collaboration among scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed toward future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine at UCLA, UCLA's Jonsson Cancer Center, the UCLA Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science.

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2012, the Jonsson Cancer Center was once again named among the nation's top 10 cancer centers by U.S. News & World Report, a ranking it has held for 12 of the past 13 years.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Shaun Mason | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>