Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for infectious diseases research developed at Umeå University

03.03.2011
Infectious diseases researchers at Umeå University in Sweden are studying the surface properties of bacteria together with materials scientists.

Studies of the outermost parts of the cell walls of bacteria yield new information about the chemical composition of structures that are important for the capacity of bacteria to infect organisms. The findings are now being reported in the Journal of Biological Chemistry.

When bacteria infect a host organism, they usually attach to tissue cells. Infectious diseases scientists at Umeå University are studying structural details of the outermost layer of bacterial cells in order to find new substances that can prevent bacterial infections. In collaboration with materials researchers at the Department of Chemistry, they describe new methods that facilitate and speed up their studies.

Chemist Madeleine Ramstedt is pursuing research on a material with new properties that prevent bacteria from attaching to its surface. The new material would be optimal for equipment in health care, where biofilms of bacteria can be a source of infection. In her research, Madeleine Ramstedt uses spectroscopic methods, among others, that she is now making available to her colleagues in the research consortium Umeå Centre for Microbial Research, UCMR.

Microbiologists Sun Nyunt Wai, Ryoma Nakao, and Bernt Eric Uhlin, together with chemists Jean-François Boily and Madeleine Ramstedt, were investigating whether new physiochemical analysis methods could also be used for microbial studies. The scientists combined so-called cryo-x-ray photoelectron spectroscopy with multivariate analysis. This analysis yields specific patterns of intensity curves depending on the chemical composition of the surface of the material being studied.

“We’ve succeeded also in analyzing the cell surfaces of bacteria with our x-ray spectroscopy. We found strong patterns that we could clearly relate to different compositions in lipids, sugar, protein, and the polymer peptidoglycan in the cell wall of the bacterium that can affect the capacity of a bacterium to infect an organism,” explains Madeleine Ramstedt.

“The method makes it possible to analyze the outermost layer, about 10 nanometers from the surface.”

“Our method is relatively simple in comparison with other methods in which the extraction of various cell components is needed. This means that with our method the surface of the bacteria can be examined under more natural conditions in an intact bacterial cell.”

X-ray photoelectron spectroscopy has previously been used to study bacteria, but only to a limited extent. The Umeå scientists have managed to optimize the method.

“We shock freeze the bacteria and keep them frozen throughout the analysis. This allows us to assume that they do not change during the examination. Now it’s possible to compare the cell walls in similar bacteria that have been treated in different ways or that have changed, for example by developing resistance. With our method we can now compare structures in cell walls in pathogenic bacteria with those of non-pathogenic bacteria, all on a larger scale. Hopefully this new method of analysis will yield more rapid results and provide infectious diseases researchers with new clues for finding new antibiotics,” says Madeleine Ramstedt.

UCMR is one of Umeå University’s strong research environments. The centre is an interdisciplinary research consortium that brings together a number of research teams in microbial research with participation from chemistry, medical and clinical microbiology, molecular biology, physics, and bioinformatics.

Contact: Dr. Madeleine Ramstedt, Department of Chemistry, Umeå University
Tel: +46 (0)90- 7866328; e-mail: madeleine.ramstedt@chem.umu.se
Original publication:
Madeleine Ramstedt, Ryoma Nakao, Sun Nyunt Wai, Bernt Eric Uhlin, Jean-François Boily: Monitoring surface chemical changes in the bacterial cell wall – multivariate analysis of cryo-x-ray photoelectronspectroscopy data. The Journal of Biological Chemistry (On-line 17 February 2011).

Karin Wikman | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>