Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method increases supply of embryonic stem cells

27.01.2014
A new method allows for large-scale generation of human embryonic stem cells of high clinical quality.

It also allows for production of such cells without destroying any human embryos. The discovery is a big step forward for stem cell research and for the high hopes for replacing damaged cells and thereby curing serious illnesses such as diabetes and Parkinson's disease.

Currently human embryonic stem cells are made from surplus in vitro fertilized (IVF) embryos that are not used for the generation of pregnancies. The embryos do not survive the procedure.

Therefore it has been illegal in the USA to to use this method for deriving embryonic stem cell lines. Sweden's legislation has been more permissive. It has been possible to generate embryonic stem cells from excess, early IVF embryos with the permission of the persons donating their eggs and sperm.

An international research team led by Karl Tryggvason, Professor of Medical Chemistry at Karolinska Institutet in Sweden and Professor at Duke-NUS Graduate Medical School in Singapore has, together with Professor Outi Hovatta at Karolinska Institutet, developed a method that makes it possible to use a single cell from an embryo of eight cells. This embryo can then be re-frozen and, theoretically, be placed in a woman's uterus.

The method is already used in Pre-implantation Genetic Diagnosis (PGD) analyses, where a genetic test is carried out on a single cell of an IVF embryo in order to detect potential hereditary diseases. If mutations are are not detected, the embryo is inserted in the woman's uterus, where it can grow into a healthy child.

"We know that an embryo can survive the removal of a single cell. This makes a great ethical difference," says Karl Tryggvason.

The single stem cell is then cultivated on a bed of a human laminin protein known as LN-521 that is normally associated with pluripotent stem cells in the embryo. This allows the stem cell to duplicate and multiply without being contaminated. Previously the cultivation of stem cells has been done on proteins from animals or on human cells, which have contaminated the stem cells through uninhibited production of thousands of proteins.

"We can cultivate the stem cells in a chemically defined, clinical quality environment. This means that one can produce stem cells on a large scale, with the precision required for pharmaceutical production," says Karl Tryggvason.

Embryonic stem cells are pluripotent and can develop into any kind of cell. This means that they can become dopamine producing cells, insulin producing cells, heart muscle cells or eye cells, to name but a few of the hopes placed on cell therapy using stem cells.

"Using this technology the supply of human embryonic stem cells is no longer a problem. It will be possible to establish a bank where stem cells can be matched by tissue type, which is important for avoiding transplants being rejected," says Karl Tryggvason.

The study has been funded by the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the Söderberg Foundation, AFA Insurance, the Sigrid Juselius Foundation, the EU's Seventh Framework Programme and the Singapore National Medical Research Council. LN-521 has been developed by the Division of Matrix Biology at the Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet and is currently marketed by the biotechnology company BioLamina, founded by Karl Tryggvason.

Publication: "Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment", Sergey Rodin, Liselotte Antonsson, Colin Niaudet, Oscar E. Simonson, Elina Salmela, Emil M. Hansson, Anna Domogatskaya, Zhijie Xiao, Pauliina Damdimopoulou, Mona Sheikhi, José Inzunza, Ann-Sofie Nilsson, Duncan Baker, Raoul Kuiper, Yi Sun, Elisabeth Blennow, Magnus Nordenskjöld, Karl-Henrik Grinnemo, Juha Kere, Christer Betsholtz, Outi Hovatta and Karl Tryggvason. Nature Communications, online January 27, 2014, doi: 10.1038/ncomms4195.

Website of the journal: http://www.nature.com/ncomms

Contact the Press Office and download images: ki.se/pressroom

Karolinska Institutet – a medical university: ki.se/English

Press Office | EurekAlert!
Further information:
http://www.ki.se

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>