Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method increases supply of embryonic stem cells

27.01.2014
A new method allows for large-scale generation of human embryonic stem cells of high clinical quality.

It also allows for production of such cells without destroying any human embryos. The discovery is a big step forward for stem cell research and for the high hopes for replacing damaged cells and thereby curing serious illnesses such as diabetes and Parkinson's disease.

Currently human embryonic stem cells are made from surplus in vitro fertilized (IVF) embryos that are not used for the generation of pregnancies. The embryos do not survive the procedure.

Therefore it has been illegal in the USA to to use this method for deriving embryonic stem cell lines. Sweden's legislation has been more permissive. It has been possible to generate embryonic stem cells from excess, early IVF embryos with the permission of the persons donating their eggs and sperm.

An international research team led by Karl Tryggvason, Professor of Medical Chemistry at Karolinska Institutet in Sweden and Professor at Duke-NUS Graduate Medical School in Singapore has, together with Professor Outi Hovatta at Karolinska Institutet, developed a method that makes it possible to use a single cell from an embryo of eight cells. This embryo can then be re-frozen and, theoretically, be placed in a woman's uterus.

The method is already used in Pre-implantation Genetic Diagnosis (PGD) analyses, where a genetic test is carried out on a single cell of an IVF embryo in order to detect potential hereditary diseases. If mutations are are not detected, the embryo is inserted in the woman's uterus, where it can grow into a healthy child.

"We know that an embryo can survive the removal of a single cell. This makes a great ethical difference," says Karl Tryggvason.

The single stem cell is then cultivated on a bed of a human laminin protein known as LN-521 that is normally associated with pluripotent stem cells in the embryo. This allows the stem cell to duplicate and multiply without being contaminated. Previously the cultivation of stem cells has been done on proteins from animals or on human cells, which have contaminated the stem cells through uninhibited production of thousands of proteins.

"We can cultivate the stem cells in a chemically defined, clinical quality environment. This means that one can produce stem cells on a large scale, with the precision required for pharmaceutical production," says Karl Tryggvason.

Embryonic stem cells are pluripotent and can develop into any kind of cell. This means that they can become dopamine producing cells, insulin producing cells, heart muscle cells or eye cells, to name but a few of the hopes placed on cell therapy using stem cells.

"Using this technology the supply of human embryonic stem cells is no longer a problem. It will be possible to establish a bank where stem cells can be matched by tissue type, which is important for avoiding transplants being rejected," says Karl Tryggvason.

The study has been funded by the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the Söderberg Foundation, AFA Insurance, the Sigrid Juselius Foundation, the EU's Seventh Framework Programme and the Singapore National Medical Research Council. LN-521 has been developed by the Division of Matrix Biology at the Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet and is currently marketed by the biotechnology company BioLamina, founded by Karl Tryggvason.

Publication: "Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment", Sergey Rodin, Liselotte Antonsson, Colin Niaudet, Oscar E. Simonson, Elina Salmela, Emil M. Hansson, Anna Domogatskaya, Zhijie Xiao, Pauliina Damdimopoulou, Mona Sheikhi, José Inzunza, Ann-Sofie Nilsson, Duncan Baker, Raoul Kuiper, Yi Sun, Elisabeth Blennow, Magnus Nordenskjöld, Karl-Henrik Grinnemo, Juha Kere, Christer Betsholtz, Outi Hovatta and Karl Tryggvason. Nature Communications, online January 27, 2014, doi: 10.1038/ncomms4195.

Website of the journal: http://www.nature.com/ncomms

Contact the Press Office and download images: ki.se/pressroom

Karolinska Institutet – a medical university: ki.se/English

Press Office | EurekAlert!
Further information:
http://www.ki.se

More articles from Life Sciences:

nachricht New Antibody Portal Bolsters Biomedical Research Reliability
27.07.2015 | University of North Carolina School of Medicine

nachricht Insights into catalytic converters
27.07.2015 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Young Scientist Discovers Magnetic Material Unnecessary to Create Spin Current

27.07.2015 | Materials Sciences

Superfast fluorescence sets new speed record

27.07.2015 | Information Technology

Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes

27.07.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>