Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New method for imaging molecules inside cells

Using a new sample holder, researchers at the University of Gothenburg, Sweden, have further developed a new method for imaging individual cells. This makes it possible to produce snapshots that not only show the outline of the cell’s contours but also the various molecules inside or on the surface of the cell, and exactly where they are located, something which is impossible with a normal microscope.

Individual human cells are small, just one or two hundredths of a millimetre in diameter. As such, special measuring equipment is needed to distinguish the various parts inside the cell. Researchers generally use a microscope that magnifies the cell and shows its contours outline, but does not provide any information on the molecules inside the cell and on its surface.

“The new sample holder is filled with holds cells in solution,” says Ingela Lanekoff, one of the researchers who developed the new method at the University of Gothenburg’s Department of Chemistry. “We then rapidly freeze the sample down to -196°C, which enables us to get a snapshot of where the various molecules are at the moment of freezing. Using this technique we can produce images that show not only the outline of the cell’s contours, but also the molecules that are there, and where they are located.”

So why do the researchers want to know which molecules are to be found in a single cell? Because the cell is the smallest living component there is, and the chemical processes that take place here play a major role in how the cell functions in our body. For example, our brain has special cells that can communicate with each other through chemical signals. This vital communication has been shown to be dependent on the molecules in the cell’s membrane.

Imaging the molecules in the membrane of single individual cells’s membrane enables researchers to measure changes. Together with previous results, Lanekoff’s findings show that the rate of communication in the studied cells studied is affected by a change of less than one per cent in the quantities abundance of a specific molecule in the membrane. This would suggest that communication between the cells in the brain is heavily dependent on the chemical composition of the membrane of each individual cell,. This could be an important part of the puzzle which could go some way towards explaining the mechanisms behind learning and memory.

The thesis also describes a new method whereby specific molecules are used in combination with special measuring equipment to locate bacteria that live on the seabed oceanfloor. The bacteria in question play an important role in nature as they counteract both seabed oceanfloor death and eutrophication overfertilization. The method enables researchers to monitor the depth and location of these bacteria in sediment on the seabed oceanfloor.

For more information, please contact:
Ingela Lanekoff, Department of Chemistry, University of Gothenburg, mobile: +46 (0)704 813 204, e-mail:
Title: An in situ fracture device to image lipids in single cells using TOF SIMS.
Authors: Lanekoff I, Kurczy ME, Adams KL, Malm J, Karlsson R, Sjövall P, Ewing AG.

Journal: Surface and Int. Sci. 2011 (43) 257-260.

Helena Aaberg | idw
Further information:

Further reports about: CHEMISTRY Gothenburg chemical process human cell single cell

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>