Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for imaging molecules inside cells

28.06.2011
Using a new sample holder, researchers at the University of Gothenburg, Sweden, have further developed a new method for imaging individual cells. This makes it possible to produce snapshots that not only show the outline of the cell’s contours but also the various molecules inside or on the surface of the cell, and exactly where they are located, something which is impossible with a normal microscope.

Individual human cells are small, just one or two hundredths of a millimetre in diameter. As such, special measuring equipment is needed to distinguish the various parts inside the cell. Researchers generally use a microscope that magnifies the cell and shows its contours outline, but does not provide any information on the molecules inside the cell and on its surface.

“The new sample holder is filled with holds cells in solution,” says Ingela Lanekoff, one of the researchers who developed the new method at the University of Gothenburg’s Department of Chemistry. “We then rapidly freeze the sample down to -196°C, which enables us to get a snapshot of where the various molecules are at the moment of freezing. Using this technique we can produce images that show not only the outline of the cell’s contours, but also the molecules that are there, and where they are located.”

So why do the researchers want to know which molecules are to be found in a single cell? Because the cell is the smallest living component there is, and the chemical processes that take place here play a major role in how the cell functions in our body. For example, our brain has special cells that can communicate with each other through chemical signals. This vital communication has been shown to be dependent on the molecules in the cell’s membrane.

Imaging the molecules in the membrane of single individual cells’s membrane enables researchers to measure changes. Together with previous results, Lanekoff’s findings show that the rate of communication in the studied cells studied is affected by a change of less than one per cent in the quantities abundance of a specific molecule in the membrane. This would suggest that communication between the cells in the brain is heavily dependent on the chemical composition of the membrane of each individual cell,. This could be an important part of the puzzle which could go some way towards explaining the mechanisms behind learning and memory.

The thesis also describes a new method whereby specific molecules are used in combination with special measuring equipment to locate bacteria that live on the seabed oceanfloor. The bacteria in question play an important role in nature as they counteract both seabed oceanfloor death and eutrophication overfertilization. The method enables researchers to monitor the depth and location of these bacteria in sediment on the seabed oceanfloor.

For more information, please contact:
Ingela Lanekoff, Department of Chemistry, University of Gothenburg, mobile: +46 (0)704 813 204, e-mail: lanekoff@chem.gu.se
Title: An in situ fracture device to image lipids in single cells using TOF SIMS.
Authors: Lanekoff I, Kurczy ME, Adams KL, Malm J, Karlsson R, Sjövall P, Ewing AG.

Journal: Surface and Int. Sci. 2011 (43) 257-260.

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/25279
http://www.gu.se

Further reports about: CHEMISTRY Gothenburg chemical process human cell single cell

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>