Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for imaging molecules inside cells

28.06.2011
Using a new sample holder, researchers at the University of Gothenburg, Sweden, have further developed a new method for imaging individual cells. This makes it possible to produce snapshots that not only show the outline of the cell’s contours but also the various molecules inside or on the surface of the cell, and exactly where they are located, something which is impossible with a normal microscope.

Individual human cells are small, just one or two hundredths of a millimetre in diameter. As such, special measuring equipment is needed to distinguish the various parts inside the cell. Researchers generally use a microscope that magnifies the cell and shows its contours outline, but does not provide any information on the molecules inside the cell and on its surface.

“The new sample holder is filled with holds cells in solution,” says Ingela Lanekoff, one of the researchers who developed the new method at the University of Gothenburg’s Department of Chemistry. “We then rapidly freeze the sample down to -196°C, which enables us to get a snapshot of where the various molecules are at the moment of freezing. Using this technique we can produce images that show not only the outline of the cell’s contours, but also the molecules that are there, and where they are located.”

So why do the researchers want to know which molecules are to be found in a single cell? Because the cell is the smallest living component there is, and the chemical processes that take place here play a major role in how the cell functions in our body. For example, our brain has special cells that can communicate with each other through chemical signals. This vital communication has been shown to be dependent on the molecules in the cell’s membrane.

Imaging the molecules in the membrane of single individual cells’s membrane enables researchers to measure changes. Together with previous results, Lanekoff’s findings show that the rate of communication in the studied cells studied is affected by a change of less than one per cent in the quantities abundance of a specific molecule in the membrane. This would suggest that communication between the cells in the brain is heavily dependent on the chemical composition of the membrane of each individual cell,. This could be an important part of the puzzle which could go some way towards explaining the mechanisms behind learning and memory.

The thesis also describes a new method whereby specific molecules are used in combination with special measuring equipment to locate bacteria that live on the seabed oceanfloor. The bacteria in question play an important role in nature as they counteract both seabed oceanfloor death and eutrophication overfertilization. The method enables researchers to monitor the depth and location of these bacteria in sediment on the seabed oceanfloor.

For more information, please contact:
Ingela Lanekoff, Department of Chemistry, University of Gothenburg, mobile: +46 (0)704 813 204, e-mail: lanekoff@chem.gu.se
Title: An in situ fracture device to image lipids in single cells using TOF SIMS.
Authors: Lanekoff I, Kurczy ME, Adams KL, Malm J, Karlsson R, Sjövall P, Ewing AG.

Journal: Surface and Int. Sci. 2011 (43) 257-260.

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/25279
http://www.gu.se

Further reports about: CHEMISTRY Gothenburg chemical process human cell single cell

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>