Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method provides fast, accurate, low cost analysis of BRCA gene mutations in breast cancer

06.08.2012
Next generation sequencing approach reported in the Journal of Molecular Diagnostics

Individuals with mutations in BRCA1 and BRCA2 genes have a significantly higher risk of developing breast and ovarian cancers. Families at risk have been seeking genetic testing and counseling based on their mutation carrier status, but the standard method of direct sequencing is labor-intensive, costly, and it only targets a part of the BRCA1 and BRCA2 genes.

A group of Canadian scientists has developed a new sequencing approach to provide a more effective method of BRCA1/2 mutational analysis. Their work is published in the September issue of The Journal of Molecular Diagnostics.

"A comprehensive understanding of BRCA1/2 genotypes and the associated tumor phenotypes is needed to establish targeted therapies," notes lead investigator Hilmi Ozcelik, PhD, of the Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. "Recent studies have suggested that certain chemical inhibitors are effective for the treatment of breast cancer in patients with BRCA1/2 mutations. Therefore, availability of new, affordable, and comprehensive technologies to screen for these mutations will be critical to identify patient-candidates for targeted therapies."

The investigators used a technique called long range PCR to generate amplified BRCA1/2 fragments, known as amplicons, from the DNA of 12 familial breast cancer patients. The amplicons were screened using deep sequencing, also known as Next Generation Sequencing (NGS), which allows for the simultaneous screening of millions of DNA molecules, thereby dramatically increasing speed and throughput. While conventional screening methods target only the exons of BRCA1/2, deep sequencing can screen the entire genomic region, including introns and untranslated regions. The specimens had been previously analyzed using conventional methods, allowing for a comparison of results.

In addition to identifying one genetic variant that was missed due to human error, the new method successfully identified all of the expected BRCA1/2 variants. They identified both exonic and exon/intron boundary variants. The test was done at a very low cost, and with a turnaround time of 12 days. "One of the key advantages of workflow of long-range PCR is the ability to visually detect large genomic duplications, deletions, and insertions," notes Dr. Ozcelik. "When combined with next generation sequencing, long range PCR can be a powerful tool in the detection of BRCA variants in the clinical setting. Our method confirmed the presence of variants with very high accuracy, and without false-positive results."

Long-range PCR and next generation sequencing identified a wide range of intronic BRCA1/2 variants, both commonly occurring and rare, that individually or in combination may impact BRCA1/2 function. Dr. Ozcelik notes that despite a small sample size, the data shows great variability in the number, type, and frequency of variants that can be identified from familial breast cancer patients.

"Our challenge now is to establish analytical methods that systematically investigate this more comprehensive data in order to provide better risk information for clinical management of the disease," says Dr. Ozcelik. "Given the extensive level of genetic information acquired from each patient, profiles can be constructed in breast cancer patients compared to population controls to produce a more effective means of generating BRCA1/2-associated risk to the individuals and their families.

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>