Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method provides fast, accurate, low cost analysis of BRCA gene mutations in breast cancer

06.08.2012
Next generation sequencing approach reported in the Journal of Molecular Diagnostics

Individuals with mutations in BRCA1 and BRCA2 genes have a significantly higher risk of developing breast and ovarian cancers. Families at risk have been seeking genetic testing and counseling based on their mutation carrier status, but the standard method of direct sequencing is labor-intensive, costly, and it only targets a part of the BRCA1 and BRCA2 genes.

A group of Canadian scientists has developed a new sequencing approach to provide a more effective method of BRCA1/2 mutational analysis. Their work is published in the September issue of The Journal of Molecular Diagnostics.

"A comprehensive understanding of BRCA1/2 genotypes and the associated tumor phenotypes is needed to establish targeted therapies," notes lead investigator Hilmi Ozcelik, PhD, of the Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. "Recent studies have suggested that certain chemical inhibitors are effective for the treatment of breast cancer in patients with BRCA1/2 mutations. Therefore, availability of new, affordable, and comprehensive technologies to screen for these mutations will be critical to identify patient-candidates for targeted therapies."

The investigators used a technique called long range PCR to generate amplified BRCA1/2 fragments, known as amplicons, from the DNA of 12 familial breast cancer patients. The amplicons were screened using deep sequencing, also known as Next Generation Sequencing (NGS), which allows for the simultaneous screening of millions of DNA molecules, thereby dramatically increasing speed and throughput. While conventional screening methods target only the exons of BRCA1/2, deep sequencing can screen the entire genomic region, including introns and untranslated regions. The specimens had been previously analyzed using conventional methods, allowing for a comparison of results.

In addition to identifying one genetic variant that was missed due to human error, the new method successfully identified all of the expected BRCA1/2 variants. They identified both exonic and exon/intron boundary variants. The test was done at a very low cost, and with a turnaround time of 12 days. "One of the key advantages of workflow of long-range PCR is the ability to visually detect large genomic duplications, deletions, and insertions," notes Dr. Ozcelik. "When combined with next generation sequencing, long range PCR can be a powerful tool in the detection of BRCA variants in the clinical setting. Our method confirmed the presence of variants with very high accuracy, and without false-positive results."

Long-range PCR and next generation sequencing identified a wide range of intronic BRCA1/2 variants, both commonly occurring and rare, that individually or in combination may impact BRCA1/2 function. Dr. Ozcelik notes that despite a small sample size, the data shows great variability in the number, type, and frequency of variants that can be identified from familial breast cancer patients.

"Our challenge now is to establish analytical methods that systematically investigate this more comprehensive data in order to provide better risk information for clinical management of the disease," says Dr. Ozcelik. "Given the extensive level of genetic information acquired from each patient, profiles can be constructed in breast cancer patients compared to population controls to produce a more effective means of generating BRCA1/2-associated risk to the individuals and their families.

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>