Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method of DNA repair linked to higher likelihood of genetic mutation

17.02.2011
Researchers from Indiana University-Purdue University Indianapolis (U.S.A) and Umea° University (Sweden) report in a study published in the February 15, 2011, issue of PLoS Biology that a method by which cells repair breaks in their DNA, known as Break-induced Replication (BIR), is up to 2,800 times more likely to cause genetic mutation than normal cell repair.

Accurate transmission of genetic information requires the precise replication of DNA. Errors in DNA replication are common and nature has developed several cellular mechanisms for repairing these mistakes. Mutations, which can be deleterious (development of cancerous cells), or beneficial (evolutionary adaption), arise from uncorrected errors. When one or many cells repair themselves using the efficient BIR method, accuracy is lost.

"When BIR occurs, instead of using a "band aid" to repair a chromosomal break, the broken piece invades another chromosome and initiates replication which happens at the wrong place and at the wrong time and probably with participation of wrong proteins," said Anna Malkova, Ph.D., associate professor of biology at the School of Science at IUPUI, who led the study.

The researchers used yeast to investigate the level of mutagenesis associated with BIR and found that the method's proclivity to cause mutation was not affected by where on the DNA the repair was made.

Why is BIR so inaccurate as compared to normal replication?

"We didn't find a smoking gun," said Malkova, also an adjunct associate professor of medical and molecular genetics at the Indiana University School of Medicine. "We think there are at least four changes to replication machinery that must occur to create a perfect storm or synergy which make BIR repair so mutagenic."

For example, during BIR, the researchers found a dramatic increase in concentration of nucleotides -- the building blocks used to form DNA.

"Our findings strongly suggest that mutagenesis caused by BIR doesn't happen slowly, it occurs in surges – sudden bursts which may lead to cancer," said Malkova, who is a geneticist. "We plan to continue investigating BIR in the hope of finding clues as to why this mechanism of cell repair is so likely to cause mutations. The ultimate goal, of course, is to prevent those mutations that cause cancer."

Co-authors of the study, "Break-induced Replication Is Highly Inaccurate" are Angela Deem, Tiffany Blackgrove, Alexandra Vayl, Barbara Coffey, and Ruchi Mathur of the School of Science at IUPUI and Andrea Keszthelyi and Andrei Chabes of Umea° University. The work was supported by the National Institutes of Health (U.S), the Swedish Foundation for Strategic Research; the Swedish Research Council, and the Swedish Cancer Society.

The School of Science at IUPUI is committed to excellence in teaching, research and service in the biological, physical, behavioral and mathematical sciences. The School is dedicated to being a leading resource for interdisciplinary research and science education in support of Indiana's effort to expand and diversify its economy. For more information, visit www.science.iupui.edu

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>