Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method of DNA repair linked to higher likelihood of genetic mutation

17.02.2011
Researchers from Indiana University-Purdue University Indianapolis (U.S.A) and Umea° University (Sweden) report in a study published in the February 15, 2011, issue of PLoS Biology that a method by which cells repair breaks in their DNA, known as Break-induced Replication (BIR), is up to 2,800 times more likely to cause genetic mutation than normal cell repair.

Accurate transmission of genetic information requires the precise replication of DNA. Errors in DNA replication are common and nature has developed several cellular mechanisms for repairing these mistakes. Mutations, which can be deleterious (development of cancerous cells), or beneficial (evolutionary adaption), arise from uncorrected errors. When one or many cells repair themselves using the efficient BIR method, accuracy is lost.

"When BIR occurs, instead of using a "band aid" to repair a chromosomal break, the broken piece invades another chromosome and initiates replication which happens at the wrong place and at the wrong time and probably with participation of wrong proteins," said Anna Malkova, Ph.D., associate professor of biology at the School of Science at IUPUI, who led the study.

The researchers used yeast to investigate the level of mutagenesis associated with BIR and found that the method's proclivity to cause mutation was not affected by where on the DNA the repair was made.

Why is BIR so inaccurate as compared to normal replication?

"We didn't find a smoking gun," said Malkova, also an adjunct associate professor of medical and molecular genetics at the Indiana University School of Medicine. "We think there are at least four changes to replication machinery that must occur to create a perfect storm or synergy which make BIR repair so mutagenic."

For example, during BIR, the researchers found a dramatic increase in concentration of nucleotides -- the building blocks used to form DNA.

"Our findings strongly suggest that mutagenesis caused by BIR doesn't happen slowly, it occurs in surges – sudden bursts which may lead to cancer," said Malkova, who is a geneticist. "We plan to continue investigating BIR in the hope of finding clues as to why this mechanism of cell repair is so likely to cause mutations. The ultimate goal, of course, is to prevent those mutations that cause cancer."

Co-authors of the study, "Break-induced Replication Is Highly Inaccurate" are Angela Deem, Tiffany Blackgrove, Alexandra Vayl, Barbara Coffey, and Ruchi Mathur of the School of Science at IUPUI and Andrea Keszthelyi and Andrei Chabes of Umea° University. The work was supported by the National Institutes of Health (U.S), the Swedish Foundation for Strategic Research; the Swedish Research Council, and the Swedish Cancer Society.

The School of Science at IUPUI is committed to excellence in teaching, research and service in the biological, physical, behavioral and mathematical sciences. The School is dedicated to being a leading resource for interdisciplinary research and science education in support of Indiana's effort to expand and diversify its economy. For more information, visit www.science.iupui.edu

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>