Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New method for detecting nitroxyl will boost cardiac drug research

Wake Forest University scientists have developed a new research tool in the pursuit of heart medications based on the compound nitroxyl by identifying unique chemical markers for its presence in biological systems.

Nitroxyl, a cousin to the blood-vessel relaxing compound nitric oxide, has been shown in studies to strengthen canine heart beats, but research into its potential benefits for humans has been slowed by a lack of specific detection methods.

"I think this is a very powerful tool to help in the development of new drugs for congestive heart failure," said S. Bruce King, a professor of chemistry at Wake Forest who leads the team that conducted the research.

Researchers can generate nitroxyl from precursor chemicals under controlled conditions, but studying the molecule's activity in cells is difficult because its constituent elements—nitrogen, oxygen and hydrogen—react so readily with other molecules. King's research team used compounds that are not present in normal cell biology to produce a reaction that yields the identifying chemical markers.

King has been investigating nitrogen oxide compounds at Wake Forest since 1995. While scientists have established that the human body naturally produces nitric oxide, natural production of nitroxyl is suspected but has not been demonstrated. King said the new chemical markers could help answer that question, as well.

The research is described in an article, "Reductive Phosphine-Mediated Ligation of Nitroxyl (HNO)," published online in the American Chemical Society's journal Organic Letters. King co-authored the paper with Wake Forest graduate chemistry students Julie Reisz and Erika Klorig, and chemistry department staff member Marcus Wright, an instrumentation manager.

King's research team has received support from the National Institutes of Health, the National Science Foundation, the American Heart Association and the North Carolina Biotechnology Center.

Eric Frazier | EurekAlert!
Further information:

Further reports about: Nitroxyl cell biology chemical markers heart medications nitric oxide

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>