Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for detecting nitroxyl will boost cardiac drug research

07.07.2009
Wake Forest University scientists have developed a new research tool in the pursuit of heart medications based on the compound nitroxyl by identifying unique chemical markers for its presence in biological systems.

Nitroxyl, a cousin to the blood-vessel relaxing compound nitric oxide, has been shown in studies to strengthen canine heart beats, but research into its potential benefits for humans has been slowed by a lack of specific detection methods.

"I think this is a very powerful tool to help in the development of new drugs for congestive heart failure," said S. Bruce King, a professor of chemistry at Wake Forest who leads the team that conducted the research.

Researchers can generate nitroxyl from precursor chemicals under controlled conditions, but studying the molecule's activity in cells is difficult because its constituent elements—nitrogen, oxygen and hydrogen—react so readily with other molecules. King's research team used compounds that are not present in normal cell biology to produce a reaction that yields the identifying chemical markers.

King has been investigating nitrogen oxide compounds at Wake Forest since 1995. While scientists have established that the human body naturally produces nitric oxide, natural production of nitroxyl is suspected but has not been demonstrated. King said the new chemical markers could help answer that question, as well.

The research is described in an article, "Reductive Phosphine-Mediated Ligation of Nitroxyl (HNO)," published online in the American Chemical Society's journal Organic Letters. King co-authored the paper with Wake Forest graduate chemistry students Julie Reisz and Erika Klorig, and chemistry department staff member Marcus Wright, an instrumentation manager.

King's research team has received support from the National Institutes of Health, the National Science Foundation, the American Heart Association and the North Carolina Biotechnology Center.

Eric Frazier | EurekAlert!
Further information:
http://www.wfu.edu

Further reports about: Nitroxyl cell biology chemical markers heart medications nitric oxide

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>